
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures 

 Lecture 10 – Introduction to MIPS 
Procedures I 

 2010-09-19 

“If cars broadcast their speeds to other 
vehicles” … (and the speeds of cars were 
automatically controlled – you could still steer) 
… “a simple in-car algorithm could help 
dissolve traffic jams as soon as they occur!”. 
Key idea – be optimistic leaving the jam and 
defensive leading into it. 

Lecturer SOE 
Dan Garcia 

www.technologyreview.com/blog/arxiv/27166/ 

Hello to wishing-to-
remain-anonymous 

Miami fan!  

CS61C L10 Introduction to MIPS : Procedures I (2) Garcia, Fall 2011 © UCB 

§  MIPS Machine Language Instruction:  
32 bits representing a single instruction 

§  Branches use PC-relative addressing, Jumps 
use absolute addressing. 

§  Disassembly is simple and starts by decoding 
opcode field. (more on wednesday) 

opcode" rs" rt" immediate"
opcode" rs" rt" rd" funct"shamt"R 

I 
J target address!opcode!

Review 

CS61C L10 Introduction to MIPS : Procedures I (3) Garcia, Fall 2011 © UCB 

C functions 
main() { 

int i,j,k,m; 
... 
i = mult(j,k); ...  
m = mult(i,i); ... 

} 

/* really dumb mult function */ 

int mult (int mcand, int mlier){ 
int product = 0; 
while (mlier > 0)  { 
  product = product + mcand; 
  mlier = mlier -1; } 
return product; 
} 

What information must 
compiler/programmer  
keep track of? 

What instructions can  
accomplish this? 

2010-02-01 @ Faculty Lunch 

CS10 : The Beauty and Joy of Computing 
http://inst.eecs.berkeley.edu/~cs39n/fa10/ 

Function Call Bookkeeping 

§  Registers play a major role in keeping 
track of information for function calls. 

§  Register conventions: 
ú  Return address  $ra 
ú  Arguments   $a0, $a1, $a2, $a3 
ú  Return value   $v0, $v1 
ú  Local variables  $s0, $s1, … , $s7 

§  The stack is also used; more later. 

CS61C L10 Introduction to MIPS : Procedures I (5) Garcia, Fall 2011 © UCB 

Instruction Support for Functions (1/6) 
 ... sum(a,b);... /* a,b:$s0,$s1 */ 
} 
int sum(int x, int y) { 
 return x+y; 

} 
 address (shown in decimal) 
1000  
1004  
1008  
1012  
1016  
… 
2000  
2004 

C 

M 
I 
P 
S 

In MIPS, all instructions are 4 
bytes, and stored in memory 
just like data. So here we 
show the addresses of where 
the programs are stored. 

CS61C L10 Introduction to MIPS : Procedures I (6) Garcia, Fall 2011 © UCB 

Instruction Support for Functions (2/6) 
 ... sum(a,b);... /* a,b:$s0,$s1 */ 
} 
int sum(int x, int y) { 
 return x+y; 

} 
 address (shown in decimal) 
1000 add  $a0,$s0,$zero  # x = a 
1004 add  $a1,$s1,$zero  # y = b  
1008 addi $ra,$zero,1016 #$ra=1016 
1012 j    sum     #jump to sum 
1016  
… 
2000 sum: add $v0,$a0,$a1 
2004 jr   $ra         # new instruction 

C 

M 
I 
P 
S 



CS61C L10 Introduction to MIPS : Procedures I (7) Garcia, Fall 2011 © UCB 

Instruction Support for Functions (3/6) 
 ... sum(a,b);... /* a,b:$s0,$s1 */ 
} 
int sum(int x, int y) { 
 return x+y; 

} 

 2000 sum: add $v0,$a0,$a1 
2004 jr   $ra     # new instruction 

• Question: Why use jr here? Why not use j? 

• Answer: sum might be called by many places, so we can’t 
return to a fixed place. The calling proc to sum must be 
able to say “return here” somehow. 

C 

M 
I 
P 
S 

CS61C L10 Introduction to MIPS : Procedures I (8) Garcia, Fall 2011 © UCB 

Instruction Support for Functions (4/6) 
§  Single instruction to jump and save return address: 

jump and link (jal) 
§  Before: 
  1008 addi $ra,$zero,1016 #$ra=1016 
  1012 j sum       #goto sum 

§  After: 
  1008 jal sum  # $ra=1012,goto sum 

§  Why have a jal?  
ú  Make the common case fast: function calls very common.   
ú  Don’t have to know where code is in memory with jal! 

CS61C L10 Introduction to MIPS : Procedures I (9) Garcia, Fall 2011 © UCB 

Instruction Support for Functions (5/6) 
§  Syntax for jal (jump and link) is same as for j 

(jump): 
  jal  label 

§   jal should really be called laj for  
“link and jump”: 
ú  Step 1 (link): Save address of next instruction into $ra!

   Why next instruction? Why not current one? 

ú  Step 2 (jump): Jump to the given label 

CS61C L10 Introduction to MIPS : Procedures I (10) Garcia, Fall 2011 © UCB 

Instruction Support for Functions (6/6) 
§  Syntax for jr (jump register): 

  jr register 

§  Instead of providing a label to jump to, the jr 
instruction provides a register which contains an 
address to jump to. 

§  Very useful for function calls: 
ú  jal stores return address in register ($ra) 
ú  jr $ra jumps back to that address 

CS61C L10 Introduction to MIPS : Procedures I (11) Garcia, Fall 2011 © UCB 

Nested Procedures (1/2) 

 int sumSquare(int x, int y) { 
 return mult(x,x)+ y; 

} 
§  Something called sumSquare, now 
sumSquare is calling mult. 

§  So there’s a value in $ra that sumSquare 
wants to jump back to, but this will be 
overwritten by the call to mult. 

§  Need to save sumSquare return address 
before call to mult. 

CS61C L10 Introduction to MIPS : Procedures I (12) Garcia, Fall 2011 © UCB 

Nested Procedures (2/2) 

§  In general, may need to save some other info in 
addition to $ra. 

§  When a C program is run, there are 3 important 
memory areas allocated: 
ú  Static: Variables declared once per program, cease 

to exist only after execution completes. E.g., C 
globals 

ú  Heap: Variables declared dynamically via malloc 
ú  Stack: Space to be used by procedure during 

execution; this is where we can save register values 



CS61C L10 Introduction to MIPS : Procedures I (13) Garcia, Fall 2011 © UCB 

C Memory Allocation 

0 

∞	
Address 

Code Program (doesn’t change size) 

Static 
Variables declared once per  
program; e.g., globals 
(doesn’t change size) 

Heap 
Explicitly created space,  
i.e., malloc() 

Stack 
Space for local vars, saved  
procedure information $sp  

stack 
pointer 

CS61C L10 Introduction to MIPS : Procedures I (14) Garcia, Fall 2011 © UCB 

Using the Stack (1/2) 

§  So we have a register $sp which always 
points to the last used space in the stack. 

§  To use stack, we decrement this pointer by the 
amount of space we need and then fill it with 
info. 

§  So, how do we compile this? 
 int sumSquare(int x, int y) { 
   return mult(x,x)+ y; 
} 

CS61C L10 Introduction to MIPS : Procedures I (15) Garcia, Fall 2011 © UCB 

Using the Stack (2/2) 

§  Hand-compile 
sumSquare:  
      addi $sp,$sp,-8 # space on stack 
      sw $ra, 4($sp)   # save ret addr 
      sw $a1, 0($sp)   # save y 
      add $a1,$a0,$zero # mult(x,x) 
      jal mult      # call mult 
      lw $a1, 0($sp)   # restore y 
      add $v0,$v0,$a1 # mult()+y 
      lw $ra, 4($sp)   # get ret addr 
      addi $sp,$sp,8  # restore stack 
      jr $ra 
mult: ... 

int sumSquare(int x, int y) { 
 return mult(x,x)+ y; } 

“push” 

“pop” 

CS61C L10 Introduction to MIPS : Procedures I (16) Garcia, Fall 2011 © UCB 

Steps for Making a Procedure Call 
1.  Save necessary values onto stack. 
2. Assign argument(s), if any. 
3.   jal call 
4. Restore values from stack. 

CS61C L10 Introduction to MIPS : Procedures I (17) Garcia, Fall 2011 © UCB 

Rules for Procedures 

§  Called with a jal instruction,  
returns with a  jr $ra 

§ Accepts up to 4 arguments in 
$a0, $a1, $a2 and $a3 

§  Return value is always in $v0  
(and if necessary in $v1) 

§ Must follow register conventions  
  So what are they? 

CS61C L10 Introduction to MIPS : Procedures I (18) Garcia, Fall 2011 © UCB 

Basic Structure of a Function 

entry_label:  
addi $sp,$sp, -framesize 
sw $ra, framesize-4($sp)  # save $ra 
save other regs if need be      

  ...    

restore other regs if need be 
lw $ra, framesize-4($sp)  # restore $ra 
addi $sp,$sp, framesize  
jr $ra 

Epilogue 

Prologue 

Body            (call other functions…) 

ra 

memory 



CS61C L10 Introduction to MIPS : Procedures I (19) Garcia, Fall 2011 © UCB 

MIPS Registers 
   The constant 0    $0    $zero 

Reserved for Assembler  $1   $at 
Return Values    $2-$3    $v0-$v1 
Arguments    $4-$7    $a0-$a3 
Temporary     $8-$15   $t0-$t7 
Saved      $16-$23  $s0-$s7 
More Temporary    $24-$25  $t8-$t9 
Used by Kernel    $26-27  $k0-$k1 
Global Pointer    $28    $gp 
Stack Pointer    $29    $sp 
Frame Pointer    $30    $fp 
Return Address    $31     $ra 

(From COD green insert) 
Use names for registers -- code is clearer! 

CS61C L10 Introduction to MIPS : Procedures I (20) Garcia, Fall 2011 © UCB 

Other Registers 

§  $at: may be used by the assembler at any 
time; unsafe to use 

§  $k0-$k1: may be used by the OS at any 
time; unsafe to use 

§  $gp, $fp: don’t worry about them 
§  Note: Feel free to read up on $gp and $fp in 

Appendix A, but you can write perfectly good 
MIPS code without them. 

CS61C L10 Introduction to MIPS : Procedures I (21) Garcia, Fall 2011 © UCB 

Peer Instruction 

When translating this to MIPS… 
1)  We COULD copy $a0 to $a1 (& then not 

store $a0 or $a1 on the stack) to store n 
across recursive calls.  

2)  We MUST save $a0 on the stack since it gets 
changed. 

3)  We MUST save $ra on the stack since we 
need to know where to return to… 

   123 
a) FFF 
b) FFT 
c) FTF 
c) FTT 
d) TFF 
d) TFT 
e) TTF 
e) TTT 

int fact(int n){ 
 if(n == 0) return 1; else return(n*fact(n-1));} 

CS61C L10 Introduction to MIPS : Procedures I (22) Garcia, Fall 2011 © UCB 

“And in Conclusion…” 

§  Functions called with jal, return with jr $ra. 
§  The stack is your friend: Use it to save anything you 

need.  Just leave it the way you found it! 
§  Instructions we know so far… 

Arithmetic: add, addi, sub, addu, addiu, subu 
Memory:      lw, sw, lb, sb 

Decision:   beq, bne, slt, slti, sltu, sltiu 
Unconditional Branches (Jumps):  j, jal, jr 

§  Registers we know so far 
ú  All of them! 


