
inst.eecs.berkeley.edu/~cs61c
UCB CS61C : Machine Structures

 Lecture 07
Introduction to MIPS : Decisions II

 2011-09-12

Researchers at Microsoft and UW are working
on a system that uses the fact that your body
can act as an antenna and notes how ambient
electric fields change to figure out what your
position or motion was. The idea is you don’t
need a camera or Wiimote to interact with it!

Lecturer SOE
Dan Garcia

www.nytimes.com/2011/09/11/business/using-
gestures-to-control-electronic-devices.html

Hello to Dr Mauro
Sgarzi from Italy!!

CS61C L07 Introduction to MIPS : Decisions II (2) Garcia, Fall 2011 © UCB

Review
§  Memory is byte-addressable, but lw and sw

access one word at a time.
§  A pointer (used by lw and sw) is just a memory

address, so we can add to it or subtract from it
(using offset).

§  A Decision allows us to decide what to execute at
run-time rather than compile-time.

§  C Decisions are made using conditional statements
within if, while, do while, for.

§  MIPS Decision making instructions are the
conditional branches: beq and bne.

§  New Instructions:
lw, sw, beq, bne, j

CS61C L07 Introduction to MIPS : Decisions II (3) Garcia, Fall 2011 © UCB

Last time: Loading, Storing bytes 1/2

§  In addition to word data transfers
(lw, sw), MIPS has byte data transfers:
ú  load byte: lb
ú  store byte: sb

§  same format as lw, sw
§  E.g., lb $s0, 3($s1)

ú  contents of memory location with address = sum
of “3” + contents of register s1 is copied to the
low byte position of register s0.

CS61C L07 Introduction to MIPS : Decisions II (4) Garcia, Fall 2011 © UCB

x

Loading, Storing bytes 2/2
§  What do with other 24 bits in the 32 bit register?

ú  lb: sign extends to fill upper 24 bits

§  Normally don’t want to sign extend chars
§  MIPS instruction that doesn’t

 sign extend when loading bytes:
ú  load byte unsigned: lbu

byte
loaded …is copied to “sign-extend”

This bit

xxxx xxxx xxxx xxxx xxxx xxxx zzz zzzz

CS61C L07 Introduction to MIPS : Decisions II (5) Garcia, Fall 2011 © UCB

Overflow in Arithmetic (1/2)

§  Reminder: Overflow occurs when there is a
mistake in arithmetic due to the limited
precision in computers.

§  Example (4-bit unsigned numbers):
 15 1111
 + 3 + 0011
 18 10010
ú  But we don’t have room for 5-bit solution, so the

solution would be 0010, which is +2, and wrong.

CS61C L07 Introduction to MIPS : Decisions II (6) Garcia, Fall 2011 © UCB

Overflow in Arithmetic (2/2)

§  Some languages detect overflow (Ada),
some don’t (C)

§  MIPS solution is 2 kinds of arithmetic instructs:
ú  These cause overflow to be detected
   add (add)
   add immediate (addi)
   subtract (sub)

ú  These do not cause overflow detection
   add unsigned (addu)
   add immediate unsigned (addiu)
   subtract unsigned (subu)

§  Compiler selects appropriate arithmetic
ú  MIPS C compilers produce addu, addiu, subu

CS61C L07 Introduction to MIPS : Decisions II (7) Garcia, Fall 2011 © UCB

Two “Logic” Instructions

§  Here are 2 more new instructions
§  Shift Left: sll $s1,$s2,2 #s1=s2<<2

ú  Store in $s1 the value from $s2 shifted 2 bits to the
left (they fall off end), inserting 0’s on right; << in C.

ú  Before: 0000 0002hex
0000 0000 0000 0000 0000 0000 0000 0010two

ú  After: 0000 0008hex
0000 0000 0000 0000 0000 0000 0000 1000two

ú  What arithmetic effect does shift left have?

§  Shift Right: srl is opposite shift; >>

CS61C L07 Introduction to MIPS : Decisions II (8) Garcia, Fall 2011 © UCB

Loops in C/Assembly (1/3)

§  Simple loop in C; A[] is an array of ints
 do { g = g + A[i];
 i = i + j;
} while (i != h);

§  Rewrite this as:
 Loop: g = g + A[i];
 i = i + j;
 if (i != h) goto Loop;

§  Use this mapping:
 g, h, i, j, base of A
 $s1, $s2, $s3, $s4, $s5

CS61C L07 Introduction to MIPS : Decisions II (9) Garcia, Fall 2011 © UCB

Loops in C/Assembly (2/3)

§  Final compiled MIPS code:
Loop: sll $t1,$s3,2 # $t1= 4*I
 addu $t1,$t1,$s5 # $t1=addr A+4i
 lw $t1,0($t1) # $t1=A[i]
 addu $s1,$s1,$t1 # g=g+A[i]
 addu $s3,$s3,$s4 # i=i+j
 bne $s3,$s2,Loop # goto Loop
 # if i!=h

§  Original code:
 Loop: g = g + A[i];
 i = i + j;
 if (i != h) goto Loop;

CS61C L07 Introduction to MIPS : Decisions II (10) Garcia, Fall 2011 © UCB

Loops in C/Assembly (3/3)
§  There are three types of loops in C:

ú  while
ú  do … while
ú  for

§  Each can be rewritten as either of the other two,
so the method used in the previous example
can be applied to these loops as well.

§  Key Concept: Though there are multiple ways of
writing a loop in MIPS, the key to decision-
making is conditional branch

CS61C L07 Introduction to MIPS : Decisions II (11) Garcia, Fall 2011 © UCB

Administrivia
§  The schedule through week 7 has been determined

ú  Midterm 7-9pm on 2011-10-06

§  Other administrivia?

CS61C L07 Introduction to MIPS : Decisions II (12) Garcia, Fall 2011 © UCB

Inequalities in MIPS (1/4)
§  Until now, we’ve only tested equalities

(== and != in C). General programs need to
test < and > as well.

§  Introduce MIPS Inequality Instruction:
ú  “Set on Less Than”
ú  Syntax: slt reg1,reg2,reg3
ú  Meaning:

 if (reg2 < reg3)
 reg1 = 1;
 else reg1 = 0;

 “set” means “change to 1”,
“reset” means “change to 0”.

reg1 = (reg2 < reg3);

Same thing…

CS61C L07 Introduction to MIPS : Decisions II (13) Garcia, Fall 2011 © UCB

Inequalities in MIPS (2/4)

§  How do we use this? Compile by hand:
if (g < h) goto Less; #g:$s0, h:$s1

§  Answer: compiled MIPS code…

 slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # goto Less
 # if $t0!=0
 # (if (g<h)) Less:

§  Register $0 always contains the value 0, so bne
and beq often use it for comparison after an
slt instruction.

§  A slt è bne pair means if(… < …)goto…

CS61C L07 Introduction to MIPS : Decisions II (14) Garcia, Fall 2011 © UCB

Inequalities in MIPS (3/4)

§  Now we can implement <,
but how do we implement >, ≤ and ≥ ?

§  We could add 3 more instructions, but:
ú  MIPS goal: Simpler is Better

§  Can we implement ≤ in one or more
instructions using just slt and branches?
ú  What about >?
ú  What about ≥?

CS61C L07 Introduction to MIPS : Decisions II (15) Garcia, Fall 2011 © UCB

Inequalities in MIPS (4/4)

 # a:$s0, b:$s1
slt $t0,$s0,$s1 # $t0 = 1 if a<b
beq $t0,$0,skip # skip if a >= b
 <stuff> # do if a<b
skip:

Two independent variations possible:
Use slt $t0,$s1,$s0 instead of
slt $t0,$s0,$s1

Use bne instead of beq

CS61C L07 Introduction to MIPS : Decisions II (16) Garcia, Fall 2011 © UCB

Immediates in Inequalities

§  There is also an immediate version of slt to
test against constants: slti
ú  Helpful in for loops

 if (g >= 1) goto Loop
 Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
 # $s0<1 (g<1)
beq $t0,$0,Loop # goto Loop
 # if $t0==0
 # (if (g>=1))

C!

M 
I 
P 
S!

An slt  beq pair means if(… ≥ …)goto…

CS61C L07 Introduction to MIPS : Decisions II (17) Garcia, Fall 2011 © UCB

What about unsigned numbers?

§  Also unsigned inequality instructions:
 sltu, sltiu

…which sets result to 1 or 0 depending on
unsigned comparisons

§  What is value of $t0, $t1?
($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex)

 slt $t0, $s0, $s1
sltu $t1, $s0, $s1

CS61C L07 Introduction to MIPS : Decisions II (18) Garcia, Fall 2011 © UCB

MIPS Signed vs. Unsigned – diff meanings!
§  MIPS terms Signed/Unsigned “overloaded”:

ú  Do/Don't sign extend
   (lb, lbu)

ú  Do/Don't overflow
   (add, addi, sub, mult, div)
   (addu, addiu, subu, multu, divu)

ú  Do signed/unsigned compare
   (slt, slti/sltu, sltiu)

CS61C L07 Introduction to MIPS : Decisions II (19) Garcia, Fall 2011 © UCB

 What C code properly fills in the
blank in loop below?

Peer Instruction

do {i--;} while(__);

Loop:addi $s0,$s0,-1 # i = i - 1
 slti $t0,$s1,2 # $t0 = (j < 2)
 beq $t0,$0 ,Loop # goto Loop if $t0 == 0
 slt $t0,$s1,$s0 # $t0 = (j < i)
 bne $t0,$0 ,Loop # goto Loop if $t0 != 0

a) j < 2 && j < i
a) j ≥ 2 && j < i
b) j < 2 && j ≥ i
b) j ≥ 2 && j ≥ i
c) j > 2 && j < i
c) j < 2 || j < i
d) j ≥ 2 || j < i
d) j < 2 || j ≥ i
e) j ≥ 2 || j ≥ i
e) j > 2 || j < i

($s0=i, $s1=j)

CS61C L07 Introduction to MIPS : Decisions II (20) Garcia, Fall 2011 © UCB

“And in conclusion…”

§  To help the conditional branches make decisions
concerning inequalities, we introduce: “Set on
Less Than” called
slt, slti, sltu, sltiu

§  One can store and load (signed and unsigned)
bytes as well as words with lb, lbu

§  Unsigned add/sub don’t cause overflow
§  New MIPS Instructions:
 sll, srl, lb, lbu
 slt, slti, sltu, sltiu
 addu, addiu, subu

CS61C L07 Introduction to MIPS : Decisions II (21) Garcia, Fall 2011 © UCB

Bonus Slides

CS61C L07 Introduction to MIPS : Decisions II (22) Garcia, Fall 2011 © UCB

Example: The C Switch Statement (1/3)

§  Choose among four alternatives depending on
whether k has the value 0, 1, 2 or 3. Compile this
C code:

switch (k) {
 case 0: f=i+j; break; /* k=0 */
 case 1: f=g+h; break; /* k=1 */
 case 2: f=g–h; break; /* k=2 */
 case 3: f=i–j; break; /* k=3 */
}

CS61C L07 Introduction to MIPS : Decisions II (23) Garcia, Fall 2011 © UCB

Example: The C Switch Statement (2/3)

§  This is complicated, so simplify.
§  Rewrite it as a chain of if-else statements,

which we already know how to compile:
if(k==0) f=i+j;
 else if(k==1) f=g+h;
 else if(k==2) f=g–h;
 else if(k==3) f=i–j;

§  Use this mapping:
 f:$s0, g:$s1, h:$s2,
i:$s3, j:$s4, k:$s5

CS61C L07 Introduction to MIPS : Decisions II (24) Garcia, Fall 2011 © UCB

Example: The C Switch Statement (3/3)

§  Final compiled MIPS code:
 bne $s5,$0,L1 # branch k!=0
 add $s0,$s3,$s4 #k==0 so f=i+j
 j Exit # end of case so Exit
L1: addi $t0,$s5,-1 # $t0=k-1
 bne $t0,$0,L2 # branch k!=1
 add $s0,$s1,$s2 #k==1 so f=g+h
 j Exit # end of case so Exit
L2: addi $t0,$s5,-2 # $t0=k-2
 bne $t0,$0,L3 # branch k!=2
 sub $s0,$s1,$s2 #k==2 so f=g-h
 j Exit # end of case so Exit
L3: addi $t0,$s5,-3 # $t0=k-3
 bne $t0,$0,Exit # branch k!=3
 sub $s0,$s3,$s4 # k==3 so f=i-j
Exit:

