
CS61C L04 Introduction to C (pt 2) (1)! Garcia, Fall 2011 © UCB!

! !Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

 Lecture 4 – Introduction to C (pt 2)  

 2011-09-02!

Quantum Processor ⇒ 
Researchers @ UCSB  

have produced the first Quantum
processor with memory that can be

used to store instructions and data! (ala
what von Neumann did in 1940s)!

www.technologyreview.com/computing/38495

CS61C L04 Introduction to C (pt 2) (2)! Garcia, Fall 2011 © UCB!

Review!

• All declarations go at the beginning of
each function except if you use C99.!
• All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.!
• A pointer is a C version of the
address.!
* “follows” a pointer to its value!
& gets the address of a value!

• Only 0 (i.e., NULL) evaluate to FALSE.!

CS61C L04 Introduction to C (pt 2) (3)! Garcia, Fall 2011 © UCB!

More C Pointer Dangers!

• Declaring a pointer just allocates
space to hold the pointer – it does not
allocate something to be pointed to!!
• Local variables in C are not initialized,
they may contain anything.!
• What does the following code do?!

void f()
{
 int *ptr;
 *ptr = 5;
}

CS61C L04 Introduction to C (pt 2) (4)! Garcia, Fall 2011 © UCB!

Arrays (1/5)!

• Declaration:!
int ar[2];!

!declares a 2-element integer array. An
array is really just a block of memory.  
 int ar[] = {795, 635};!
!declares and fills a 2-elt integer array.!
• Accessing elements:!

ar[num]!

!returns the numth element.!

CS61C L04 Introduction to C (pt 2) (5)! Garcia, Fall 2011 © UCB!

Arrays (2/5)!

• Arrays are (almost) identical to
pointers!
• char *string and char string[] are
nearly identical declarations!

• They differ in very subtle ways:
incrementing, declaration of filled arrays!

• Key Concept: An array variable is a
“pointer” to the first element.!

CS61C L04 Introduction to C (pt 2) (6)! Garcia, Fall 2011 © UCB!

Arrays (3/5)!
• Consequences:!

• ar is an array variable but looks like a
pointer in many respects (though not all)!
• ar[0] is the same as *ar!
• ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access
arrays more conveniently.!

• Declared arrays are only allocated
while the scope is valid!
 char *foo() {
 char string[32]; ...;
 return string;
} is incorrect!

CS61C L04 Introduction to C (pt 2) (7)! Garcia, Fall 2011 © UCB!

Arrays (4/5)!
• Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a variable for declaration & incr!

• Wrong 
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }!

• Why? SINGLE SOURCE OF TRUTH!
• You’re utilizing indirection and avoiding
maintaining two copies of the number 10!

CS61C L04 Introduction to C (pt 2) (8)! Garcia, Fall 2011 © UCB!

Arrays (5/5)!

• Pitfall: An array in C does not know its
own length, & bounds not checked!!

• Consequence: We can accidentally
access off the end of an array.!

• Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.!

• Segmentation faults and bus errors:!
• These are VERY difficult to find;  
be careful! (You’ll learn how to debug
these in lab…)!

CS61C L04 Introduction to C (pt 2) (9)! Garcia, Fall 2011 © UCB!

Pointers (1/4)!

• Sometimes you want to have a
procedure increment a variable?!
• What gets printed?!

void AddOne(int x)
{ x = x + 1; }

int y = 5;
AddOne(y);
printf(“y = %d\n”, y);

y = 5

…review…!

CS61C L04 Introduction to C (pt 2) (10)! Garcia, Fall 2011 © UCB!

Pointers (2/4)!

• Solved by passing in a pointer to our
subroutine.!
• Now what gets printed?!

void AddOne(int *p)
{ *p = *p + 1; }

int y = 5;
AddOne(&y);
printf(“y = %d\n”, y);

y = 6

…review…!

CS61C L04 Introduction to C (pt 2) (11)! Garcia, Fall 2011 © UCB!

Pointers (3/4)!

• But what if what you want changed is
a pointer?!
• What gets printed?!

void IncrementPtr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

CS61C L04 Introduction to C (pt 2) (12)! Garcia, Fall 2011 © UCB!

Pointers (4/4)!

• Solution! Pass a pointer to a pointer,
declared as **h!
• Now what gets printed?!

void IncrementPtr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

CS61C L04 Introduction to C (pt 2) (13)! Garcia, Fall 2011 © UCB!

Dynamic Memory Allocation (1/4)!
• C has operator sizeof() which gives size in bytes

(of type or variable)!
• Assume size of objects can be misleading and is bad

style, so use sizeof(type)!
•  Many years ago an int was 16 bits, and programs were

written with this assumption. !
•  What is the size of integers now?!

•  “sizeof” knows the size of arrays:!
int ar[3]; // Or: int ar[] = {54, 47, 99}!

sizeof(ar) ⇒ 12!
•  …as well for arrays whose size is determined at run-time:!
int n = 3;!

int ar[n]; // Or: int ar[fun_that_returns_3()];!

sizeof(ar) ⇒ 12!

CS61C L04 Introduction to C (pt 2) (14)! Garcia, Fall 2011 © UCB!

Dynamic Memory Allocation (2/4)!
• To allocate room for something new to
point to, use malloc() (with the help of a
typecast and sizeof): 
ptr = (int *) malloc (sizeof(int));!

• Now, ptr points to a space somewhere in
memory of size (sizeof(int)) in bytes.!
• (int *) simply tells the compiler what will
go into that space (called a typecast).!

• malloc is almost never used for 1 var!
ptr = (int *) malloc (n*sizeof(int));!

• This allocates an array of n integers.!

CS61C L04 Introduction to C (pt 2) (15)! Garcia, Fall 2011 © UCB!

Dynamic Memory Allocation (3/4)!
• Once malloc() is called, the memory
location contains garbage, so don’t
use it until you’ve set its value.!
• After dynamically allocating space, we
must dynamically free it:!
free(ptr);!

• Use this command to clean up.!
• Even though the program frees all
memory on exit (or when main returns),
don’t be lazy!!

• You never know when your main will get
transformed into a subroutine!!

CS61C L04 Introduction to C (pt 2) (16)! Garcia, Fall 2011 © UCB!

Dynamic Memory Allocation (4/4)!
• The following two things will cause your

program to crash or behave strangely later
on, and cause VERY VERY hard to figure
out bugs:!
• free()ing the same piece of memory twice!
• calling free() on something you didn’t get

back from malloc() !

• The runtime does not check for these
mistakes!

• Memory allocation is so performance-critical
that there just isn’t time to do this !

• The usual result is that you corrupt the memory
allocator’s internal structure!

• You won’t find out until much later on, in a
totally unrelated part of your code!!

CS61C L04 Introduction to C (pt 2) (17)! Garcia, Fall 2011 © UCB!

Pointers in C!
• Why use pointers?!

• If we want to pass a huge struct or array,
it’s easier / faster / etc to pass a pointer
than the whole thing.!

• In general, pointers allow cleaner, more
compact code.!

• So what are the drawbacks?!
• Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.!

• Dangling reference (use ptr before malloc)!
• Memory leaks (tardy free, lose the ptr)!

CS61C L04 Introduction to C (pt 2) (18)! Garcia, Fall 2011 © UCB!

Arrays not implemented as you’d think!
void foo() {
int *p, *q, x;
int a[4];
p = (int *) malloc (sizeof(int));
q = &x;

*p = 1; // p[0] would also work here
printf("*p:%u, p:%u, &p:%u\n", *p, p, &p);

 *q = 2; // q[0] would also work here
printf("*q:%u, q:%u, &q:%u\n", *q, q, &q);

 *a = 3; // a[0] would also work here
printf("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}
?" ?" ..." ..." 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 ..."

p q x"
?" ?" ?"

unnamed-malloc-space"
40" 20" 2" 3" 1"

*p:1, p:40, &p:12
*q:2, q:20, &q:16
*a:3, a:24, &a:24

K&R: “An array name is not a variable”!

a"
24"
?"

CS61C L04 Introduction to C (pt 2) (19)! Garcia, Fall 2011 © UCB!

Which are guaranteed to print out 5? !

I: main() {  
 int *a-ptr = (int *)malloc(int);  
 *a-ptr = 5;  
 printf(“%d”, *a-ptr);  
 }!

II:main() {  
 int *p, a = 5;  
 p = &a; ...  
 /* code; a,p NEVER on LEFT of = */  
 printf(“%d”, a);  
 }!

Peer Instruction!

 I II  
a) - -  
b) - YES  
c) YES -  
d) YES YES  
e) No idea!

CS61C L04 Introduction to C (pt 2) (20)! Garcia, Fall 2011 © UCB!

Binky Pointer Video (thanks to NP @ SU)!

CS61C L04 Introduction to C (pt 2) (21)! Garcia, Fall 2011 © UCB!

“And in Conclusion…”!
• Pointers and arrays are virtually same!
• C knows how to increment pointers!
• C is an efficient language, with little protection!

•  Array bounds not checked!
•  Variables not automatically initialized!

• Use handles to change pointers!
• Dynamically allocated heap memory must be

manually deallocated in C.!
•  Use malloc() and free() to allocate and deallocate

memory from heap.!

•  (Beware) The cost of efficiency is more overhead
for the programmer.!

•  “C gives you a lot of extra rope but be careful not to hang
yourself with it!”!

