CS61C : Machine Structures

Lecture 3 — Introduction to
the C Programming Language (pt 1)

2011-08-31 Get your clickers ready...

Lecturer SOE Dan Garcia

www.cs .berkeley.edu/~ddgarcia

First Strechable OLED! = | "

> M Still in the early research stage,

but englneers at sister campus UCLA have =

developed an organic light-emitting diode that F =

streches, which could lead to electronics that | |
can be rolled up like cloth.

www . technologyreview. com/comput1ng/38439/

CS61C L03 Introduction to C (pt 1) (1) Garcia, Fall 2011 © UCB

And - . META: We often make design
na in review... decisions to make HW simple

 We represent “things” in computers as particular bit
patterns: N bits = 2N things

 These 5 integer encodings have different benefits; 1s
complement and sign/mag have most problems.

. (C99’s uintN t):

——————————————————

e 2’s complement (C99’s intN t) universal, learn!

00000 00001 ... 01111

e ———————
10000 ... 11110 11111

2 « Overflow: numbers «; computers finite,errors!

CS61C LO03 Introduction to C (pt 1) (2) M ETA: Ain,t no free IunCh Garcia, Fall 2011 © UCB

“Before this class, | (student) would say
| am a solid C programmer”

a) Strongly disagree (never coded, and |
don’t know Java or C++)

b) Mildly disagree (never coded, but | do
know Java and/or C++)

c) Neutral (I've coded a little in C)
d) Mildly agree (I’ve coded a fair bitin C)
e) Strongly agree (I've coded a /ot in C)

Q CS61C L03 Introduction to C (pt 1) (3) Garcia, Fall 2011 © UCB

“Before this class, | (student) would say
| am a solid Java programmer”

a) Strongly disagree (never coded, and |
don’tknow C or C++)

b) Mildly disagI

ee (never coded, but | do
know C an

;or ++)

c) Neutral (I've coded a /ittle in Java)

d) Mildly agree (I’ve coded a fair bit in Java)
e) Strongly agree (I've coded a /ot in Java)

Q CS61C L03 Introduction to C (pt 1) (4) Garcia, Fall 2011 © UCB

Has there been an update to ANSI C?

e Yes! It’s called the “C99” or “C9x” std
* You need “gcc -std=c99” to compile

e References

http://en.wikipedia.org/wiki/C99
http://home.tiscalinet.ch/t wolf/tw/c/c9x changes.html

e Highlights
- Declarations in for loops, like Java (#15)
- Java-like // comments (to end of line) (#10)
- Variable-length non-global arrays (#33)
<inttypes.h>: explicit integer types (#38)
*<stdbool.h> for boolean logic def’s (#35)

ﬂ CS61C L03 Introduction to C (pt 1) (5) Garcia, Fall 2011 © UCB

Disclaimer

e Important: You will not learn how to
fully code in C in these lectures!
You'll still need your C reference for
this course.

 K&R is a must-have reference
= Check online for more sources

- “JAVA in a Nutshell,” O’Reilly.

= Chapter 2, “How Java Differs from C”
= http://oreilly.com/catalog/javanut/excerpt/

- Brian Harvey’s course notes
= On CS61C class website

Q CS61C L03 Introduction to C (pt 1) (6) Garcia, Fall 2011 © UCB

Compilation : Overview

C compilers take C and convert it into an
architecture specific machine code (string
of 1s and 0s).

- Unlike Java which converts to architecture
independent bytecode.

* Unlike most Scheme environments which
interpret the code.

- These differ mainly in when your program is
converted to machine instructions.

* For C, generally a 2 part process of compiling .c
files to .o files, then linking the .o files into
executables. Assembling is also done (but is
hidden, i.e., done automatically, by default)

ﬂ CS61C LO03 Introduction to C (pt 1) (7) Garcia, Fall 2011 © UCB

Compilation : Advantages

e Great run-time performance: generally
much faster than Scheme or Java for

comparable code (because it
optimizes for a given architecture)

* OK compilation time: enhancements in
compilation procedure (Makefiles)
allow only modified files to be
recompiled

Q CS61C LO03 Introduction to C (pt 1) (8) Garcia, Fall 2011 © UCB

Compilation : Disadvantages

 All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.

 Executable must be rebuilt on each
new system.

- Called “porting your code” to a new
architecture.

* The “change—compile—run [repeat]”
iteration cycle is slow

Q CS61C L03 Introduction to C (pt 1) (9) Garcia, Fall 2011 © UCB

C Syntax: main

* To get the main function to accept
arguments, use this:

int main (int argc, char *argv|[])

e What does this mean?

«argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument). Here argc is 2:

unixs sort myFile

«argv is a pointer to an array containing
the arguments as strings (more on

pointers later).
Q CS61C L03 Introduction to C (pt 1) (10) Garcia, Fall 2011 © UCB

C Syntax: Variable Declarations

 Very similar to Java, but with a few minor
but important differences

 All variable declarations must go before they
are used (at the beginning of the block)*

A variable may be initialized in its
declaration; if not, it holds garbage!

 Examples of declarations:
e correct: {

int a O, b =10;

* Incorrect:* for (int i = 0; i < 10; i++)

Cd *C99 overcomes these limitations

CS61C LO03 Introduction to C (pt 1) (11) Garcia, Fall 2011 © UCB

Address vs. Value

e Consider memory to be a single huge
array:

- Each cell of the array has an address
associated with it.

 Each cell also stores some value.

* Do you think they use signed or
unsigned numbers? Negative address?!

* Don’t confuse the address referring to
a memory location with the value
stored in that location.

101 102 103 104 105 ...

" En 23 42 " En
Q CS61C L03 Introduction to C (pt 1) (12) Garcia, Fall 2011 © UCB

Pointers

e An address refers to a

points to a memory location.

_ articular
memory location. In other words, it

 Pointer: A variable that contains the

address of a variable.

Location (address) /_\
\» 101 102 103 104 105 ...

23

42

104

/> X
name

Q CS61C L03 Introduction to C (pt 1) (13)

y

P

Garcia, Fall 2011 © UCB

Pointers

 How to create a pointer:
& operator: get address of a variable

. Note the “*” gets used
*] ') 9

int P, X, P - X - 2 different ways in

this example. In the

x = 3 ’ - declaration to indicate
| 3 : x| 3 that p is going to be a

7"\ pointer, and in the

p =&x; printf to get the
P x| 3 value pointed to by p.

 How get a value pointed to?
* “dereference operator”: get value pointed to

printf (“p points to %d\n”, *p);

Q CS61C LO03 Introduction to C (pt 1) (14) Garcia, Fall 2011 © UCB

Pointers

 How to change a variable pointed to?

- Use dereference * operator on left of =

@ CS61C L03 Introduction to C (pt 1) (15)

3

713
R

5

Garcia, Fall 2011 © UCB

Pointers and Parameter Passing

Java and C pass parameters “by value”

- procedure/function/method gets a copy of the
parameter, so changing the copy cannot
change the original

void addOne (int x) {
X =x + 1;
}

int y = 3;
addOne (y) ;

y is still =3

ﬂ CS61C L03 Introduction to C (pt 1) (16) Garcia, Fall 2011 © UCB

Pointers and Parameter Passing

 How to get a function to change a value?

void addOne (int *p) {
*p = *p + 1;
}

int y = 3;
addOne (&y) ;

y IS how =4

@ CS61C L03 Introduction to C (pt 1) (17) Garcia, Fall 2011 © UCB

Pointers

* Pointers are used to point to any data
type (int, char, a struct, etc.).

 Normally a pointer can only point to
one type (int, char, a struct, etc.).

void * is atype that can point to
anything (generic pointer)

- Use sparingly to help avoid program
bugs... and security issues... and a lot
of other bad things!

@ CS61C L03 Introduction to C (pt 1) (18) Garcia, Fall 2011 © UCB

Peer Instruction Question

void main(); {
int *p, x=5, y; // init
y:*(p=&X)+1,’
int z;
flip-sign(p) ;
printf(" =%d,y=%d,P=%d\n"1errP);

}

flip-sign(int *n){*n = -(*n)}

How many syntax+logic #Errors

errors in this C99 code? ;; 2
c)3
d) 4

CS61C L03 Introduction to C (pt 1) (19) Garcia, Fall 2011 © UCB

Peer Instruction Answer

void main () ; {
int *p, x=5, y; // init
y = *(p = &x) + 1;
int z;
flip-sign(p) ;
printf ("x=%d,y=%d,p=%d\n" ,x,y, *p) ;

}
flip-sign(int *n) {*n = -(*n);}
How many syntax+logic #Errors
errors in this C99 code? ;;;
3
| get 5... o | e
Q (signed ptr print is logical err) |)5

CS61C L03 Introduction to C (pt 1) (20) Garcia, Fall 2011 © UCB

And In conclusion...

 All declarations go at the beginning of
each function except if you use C99.

* All data is In memory. Each memory
location has an address to use to refer
to it and a value stored in it.

e A pointer is a C version of the
address.

* “follows” a pointer to its value
& gets the address of a value

Q CS61C LO03 Introduction to C (pt 1) (21) Garcia, Fall 2011 © UCB

C vs. Java™ Overview (1/2)

Java C
- Object-oriented - No built-in object
(OOP) abstraction. Data
separate from
methods.
* “Methods” * “Functions”
* Class libraries of C libraries are
data structures lower-level
 Automatic Manual
memory memory
management management
* Pointers

@ CS61C L03 Introduction to C (pt 1) (22) Garcia, Fall 2011 © UCB

C vs. Java™ Overview (2/2)

Java C

- High memory - Low memory
overhead from overhead
class libraries

- Relatively Slow * Relatively Fast

* Arrays initialize * Arrays Initialize
to zero to garbage

- Syntax: - Syntax: *
/* comment */ /* comment */
// comment // comment
System.out.print printf

* You need newer C compilers to allow Java style
Q(comments, or just use C99

CS61C L03 Introduction to C (pt 1) (23) Garcia, Fall 2011 © UCB

C Syntax: True or False?

 What evaluates to FALSE in C?
- 0 (integer)
* NULL (pointer: more on this later)
* no such thing as a Boolean*

e What evaluates to TRUE in C?

- everything else...

* (same idea as in scheme: only #f is
false, everything else is true!)

Q *Boolean types provided by C99’s stdbool.h

CS61C LO03 Introduction to C (pt 1) (24) Garcia, Fall 2011 © UCB

C syntax : flow control

Within a function, remarkably close to
Java constructs in methods (shows its
legacy) in terms of flow control

ejf-else
e switch
while and for

do-while

Q CS61C L03 Introduction to C (pt 1) (25) Garcia, Fall 2011 © UCB

