
CS61C L03 Introduction to C (pt 1) (1)! Garcia, Fall 2011 © UCB!

! !Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

 Lecture 3 – Introduction to  
the C Programming Language (pt 1)  

 2011-08-31!

First Strechable OLED! ⇒ 
Still in the early research stage, 

but engineers at sister campus UCLA have
developed an organic light-emitting diode that
streches, which could lead to electronics that

can be rolled up like cloth. !
www.technologyreview.com/computing/38439/

Get your clickers ready...!

CS61C L03 Introduction to C (pt 1) (2)! Garcia, Fall 2011 © UCB!

And in review...!
• We represent “things” in computers as particular bit

patterns: N bits ⇒ 2N things !!
• These 5 integer encodings have different benefits; 1s

complement and sign/mag have most problems.!

•  unsigned (C99’s uintN_t) :  

•  2’s complement (C99’s intN_t) universal, learn!!

•   

• Overflow: numbers ∞; computers finite,errors! !

00000 00001 01111 ...

11111 11110 10000 ...

META: We often make design
decisions to make HW simple!

META: Ain’t no free lunch!

00000 00001 01111 ... 10000 11111 ...

CS61C L03 Introduction to C (pt 1) (3)! Garcia, Fall 2011 © UCB!

“Before this class, I (student) would say  
I am a solid C programmer”!

a)  Strongly disagree (never coded, and I
don’t know Java or C++)!

b)  Mildly disagree (never coded, but I do
know Java and/or C++)!

c)  Neutral (I’ve coded a little in C)!
d)  Mildly agree (I’ve coded a fair bit in C)!
e)  Strongly agree (I’ve coded a lot in C)!

CS61C L03 Introduction to C (pt 1) (5)! Garcia, Fall 2011 © UCB!

Has there been an update to ANSI C?!
• Yes! It’s called the “C99” or “C9x” std!

• You need “gcc -std=c99” to compile!

• References!
http://en.wikipedia.org/wiki/C99
http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html!

• Highlights!
• Declarations in for loops, like Java (#15)!
• Java-like // comments (to end of line) (#10)!
• Variable-length non-global arrays (#33)
• <inttypes.h>: explicit integer types (#38)!
• <stdbool.h> for boolean logic def’s (#35)!

CS61C L03 Introduction to C (pt 1) (6)! Garcia, Fall 2011 © UCB!

Disclaimer!

• Important: You will not learn how to
fully code in C in these lectures!
You’ll still need your C reference for
this course.!

• K&R is a must-have reference!
§  Check online for more sources!

• “JAVA in a Nutshell,” O’Reilly. !
§  Chapter 2, “How Java Differs from C”!
§  http://oreilly.com/catalog/javanut/excerpt/!

• Brian Harvey’s course notes!
§  On CS61C class website!

CS61C L03 Introduction to C (pt 1) (7)! Garcia, Fall 2011 © UCB!

Compilation : Overview!

!C compilers take C and convert it into an
architecture specific machine code (string
of 1s and 0s).!

• Unlike Java which converts to architecture
independent bytecode.!

• Unlike most Scheme environments which
interpret the code.!

• These differ mainly in when your program is
converted to machine instructions.!

• For C, generally a 2 part process of compiling .c
files to .o files, then linking the .o files into
executables. Assembling is also done (but is
hidden, i.e., done automatically, by default)!

CS61C L03 Introduction to C (pt 1) (8)! Garcia, Fall 2011 © UCB!

Compilation : Advantages!

• Great run-time performance: generally
much faster than Scheme or Java for
comparable code (because it
optimizes for a given architecture)!
• OK compilation time: enhancements in
compilation procedure (Makefiles)
allow only modified files to be
recompiled!

CS61C L03 Introduction to C (pt 1) (9)! Garcia, Fall 2011 © UCB!

Compilation : Disadvantages!

• All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.!
• Executable must be rebuilt on each
new system.!

• Called “porting your code” to a new
architecture.!

• The “change→compile→run [repeat]”
iteration cycle is slow!

CS61C L03 Introduction to C (pt 1) (10)! Garcia, Fall 2011 © UCB!

C Syntax: main
• To get the main function to accept
arguments, use this:!
int main (int argc, char *argv[])!

• What does this mean?!
• argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument). Here argc is 2:!
unix% sort myFile

• argv is a pointer to an array containing
the arguments as strings (more on
pointers later).!

CS61C L03 Introduction to C (pt 1) (11)! Garcia, Fall 2011 © UCB!

C Syntax: Variable Declarations!
• Very similar to Java, but with a few minor

but important differences!
• All variable declarations must go before they

are used (at the beginning of the block)* !
• A variable may be initialized in its

declaration; if not, it holds garbage!!
• Examples of declarations:!

• correct: {
 int a = 0, b = 10;
 ...!
•  Incorrect:* for (int i = 0; i < 10; i++)

*C99 overcomes these limitations!

CS61C L03 Introduction to C (pt 1) (12)! Garcia, Fall 2011 © UCB!

Address vs. Value!

• Consider memory to be a single huge
array:!

• Each cell of the array has an address
associated with it.!

• Each cell also stores some value.!
• Do you think they use signed or
unsigned numbers? Negative address?!!

• Don’t confuse the address referring to
a memory location with the value
stored in that location.!

23" 42" ..." ..." 101 102 103 104 105 ..."

CS61C L03 Introduction to C (pt 1) (13)! Garcia, Fall 2011 © UCB!

Pointers!

• An address refers to a particular
memory location. In other words, it
points to a memory location.!
• Pointer: A variable that contains the
address of a variable.!

23" 42" ..." ..." 101 102 103 104 105 ..."

x" y"

Location (address)"

name"
p"

104"

CS61C L03 Introduction to C (pt 1) (14)! Garcia, Fall 2011 © UCB!

Pointers!
• How to create a pointer:!
& operator: get address of a variable!

int *p, x; ! p" ?" x" ?"

x = 3; !
p" ?" x" 3"

p =&x; !
p" x" 3"

• How get a value pointed to?!
 * “dereference operator”: get value pointed to!

 printf(“p points to %d\n”,*p); !

Note the “*” gets used
2 different ways in
this example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p."

CS61C L03 Introduction to C (pt 1) (15)! Garcia, Fall 2011 © UCB!

Pointers!
• How to change a variable pointed to?!

• Use dereference * operator on left of =

p" x" 5"*p = 5;

p" x" 3"

CS61C L03 Introduction to C (pt 1) (16)! Garcia, Fall 2011 © UCB!

Pointers and Parameter Passing!
• Java and C pass parameters “by value”!

• procedure/function/method gets a copy of the
parameter, so changing the copy cannot
change the original!
 void addOne (int x) {
 x = x + 1;
}
 int y = 3;
 addOne(y);

y is still = 3

CS61C L03 Introduction to C (pt 1) (17)! Garcia, Fall 2011 © UCB!

Pointers and Parameter Passing!
• How to get a function to change a value?!
 void addOne (int *p) {
 *p = *p + 1;
}
 int y = 3;

 addOne(&y);

y is now = 4

CS61C L03 Introduction to C (pt 1) (18)! Garcia, Fall 2011 © UCB!

Pointers!

• Pointers are used to point to any data
type (int, char, a struct, etc.).!
• Normally a pointer can only point to
one type (int, char, a struct, etc.).!
• void * is a type that can point to
anything (generic pointer)!

• Use sparingly to help avoid program
bugs… and security issues… and a lot
of other bad things!!

CS61C L03 Introduction to C (pt 1) (19)! Garcia, Fall 2011 © UCB!

Peer Instruction Question!
void main(); {
 int *p, x=5, y; // init
 y = *(p = &x) + 1;
 int z;
 flip-sign(p);
 printf("x=%d,y=%d,p=%d\n",x,y,p);
}
flip-sign(int *n){*n = -(*n)}

How many syntax+logic  
errors in this C99 code?!

#Errors
a)1
b)2
c)3
d)4
e)5

CS61C L03 Introduction to C (pt 1) (20)! Garcia, Fall 2011 © UCB!

Peer Instruction Answer!
void main(); {
 int *p, x=5, y; // init
 y = *(p = &x) + 1;
 int z;
 flip-sign(p);
 printf("x=%d,y=%d,p=%d\n",x,y,*p);
}
flip-sign(int *n){*n = -(*n);}

How many syntax+logic  
errors in this C99 code?!

I get 5…  
(signed ptr print is logical err)!

#Errors
a)1
b)2
c)3
d)4
e)5

CS61C L03 Introduction to C (pt 1) (21)! Garcia, Fall 2011 © UCB!

And in conclusion…!

• All declarations go at the beginning of
each function except if you use C99.!
• All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.!
• A pointer is a C version of the
address.!
* “follows” a pointer to its value!
& gets the address of a value!

CS61C L03 Introduction to C (pt 1) (22)! Garcia, Fall 2011 © UCB!

C vs. Java™ Overview (1/2)!

Java!
• Object-oriented 
(OOP)!

• “Methods”!
• Class libraries of
data structures!

• Automatic
memory
management!

C!
• No built-in object

abstraction. Data
separate from
methods.!

• “Functions”!
• C libraries are
lower-level!

• Manual 
memory
management!

• Pointers !

CS61C L03 Introduction to C (pt 1) (23)! Garcia, Fall 2011 © UCB!

C vs. Java™ Overview (2/2)!

Java!
• High memory
overhead from
class libraries!

• Relatively Slow!
• Arrays initialize
to zero!

• Syntax: 
 /* comment */  
// comment
System.out.print

C!
• Low memory
overhead 

• Relatively Fast!
• Arrays initialize
to garbage!

• Syntax: *  
/* comment */  
// comment  
printf !

* You need newer C compilers to allow Java style  
comments, or just use C99!

CS61C L03 Introduction to C (pt 1) (24)! Garcia, Fall 2011 © UCB!

C Syntax: True or False?!

• What evaluates to FALSE in C?!
• 0 (integer)!
• NULL (pointer: more on this later)!
• no such thing as a Boolean*!

• What evaluates to TRUE in C?!
• everything else…!
• (same idea as in scheme: only #f is
false, everything else is true!)!

*Boolean types provided by C99’s stdbool.h"
CS61C L03 Introduction to C (pt 1) (25)! Garcia, Fall 2011 © UCB!

C syntax : flow control!

•  Within a function, remarkably close to
Java constructs in methods (shows its
legacy) in terms of flow control!
• if-else
• switch
• while and for
• do-while

