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CS61C : Machine Structures 

 Lecture 3 – Introduction to  
the C Programming Language (pt 1)  

 2011-08-31!

First Strechable OLED! ⇒ 
Still in the early research stage, 

but engineers at sister campus UCLA have 
developed an organic light-emitting diode that 
streches, which could lead to electronics that 

can be rolled up like cloth.  !
www.technologyreview.com/computing/38439/ 

Get your clickers ready...!

CS61C L03 Introduction to C (pt 1) (2)! Garcia, Fall 2011 © UCB!

And in review...!
• We represent “things” in computers as particular bit 

patterns: N bits ⇒ 2N things !!
• These 5 integer encodings have different benefits; 1s 

complement and sign/mag have most problems.!

•   unsigned (C99’s uintN_t) :  

•   2’s complement (C99’s intN_t) universal, learn!!

•   

• Overflow: numbers ∞; computers finite,errors! !

00000 00001 01111 ... 

11111 11110 10000 ... 

META: We often make design 
decisions to make HW simple!

META: Ain’t no free lunch!

00000 00001 01111 ... 10000 11111 ... 
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“Before this class, I (student) would say  
I am a solid C programmer”!

a)  Strongly disagree (never coded, and I 
don’t know Java or C++)!

b)  Mildly disagree (never coded, but I do 
know Java and/or C++)!

c)  Neutral (I’ve coded a little in C)!
d)  Mildly agree (I’ve coded a fair bit in C)!
e)  Strongly agree (I’ve coded a lot in C)!
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Has there been an update to ANSI C?!
• Yes! It’s called the “C99” or “C9x” std!

• You need “gcc -std=c99” to compile!

• References!
http://en.wikipedia.org/wiki/C99 
http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html!

• Highlights!
• Declarations in for loops, like Java (#15)!
• Java-like // comments (to end of line) (#10)!
• Variable-length non-global arrays (#33) 
• <inttypes.h>: explicit integer types (#38)!
• <stdbool.h> for boolean logic def’s (#35)!
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Disclaimer!

• Important: You will not learn how to 
fully code in C in these lectures!  
You’ll still need your C reference for 
this course.!

• K&R is a must-have reference!
§  Check online for more sources!

• “JAVA in a Nutshell,” O’Reilly.  !
§  Chapter 2, “How Java Differs from C”!
§  http://oreilly.com/catalog/javanut/excerpt/!

• Brian Harvey’s course notes!
§  On CS61C class website!
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Compilation : Overview!

!C compilers take C and convert it into an 
architecture specific machine code (string 
of 1s and 0s).!

• Unlike Java which converts to architecture 
independent bytecode.!

• Unlike most Scheme environments which 
interpret the code.!

• These differ mainly in when your program is 
converted to machine instructions.!

• For C, generally a 2 part process of compiling .c 
files to .o files, then linking the .o files into 
executables. Assembling is also done (but is 
hidden, i.e., done automatically, by default)!
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Compilation : Advantages!

• Great run-time performance: generally 
much faster than Scheme or Java for 
comparable code (because it 
optimizes for a given architecture)!
• OK compilation time: enhancements in 
compilation procedure (Makefiles) 
allow only modified files to be 
recompiled!
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Compilation : Disadvantages!

• All compiled files (including the 
executable) are architecture specific, 
depending on both the CPU type and 
the operating system.!
• Executable must be rebuilt on each 
new system.!

• Called “porting your code” to a new 
architecture.!

• The “change→compile→run [repeat]” 
iteration cycle is slow!
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C Syntax: main 
• To get the main function to accept 
arguments, use this:!
int main (int argc, char *argv[])!

• What does this mean?!
• argc will contain the number of strings 
on the command line (the executable 
counts as one, plus one for each 
argument). Here argc is 2:!
unix% sort myFile 

• argv is a pointer to an array containing 
the arguments as strings (more on 
pointers later).!
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C Syntax: Variable Declarations!
• Very similar to Java, but with a few minor 

but important differences!
• All variable declarations must go before they 

are used (at the beginning of the block)* !
• A variable may be initialized in its 

declaration; if not, it holds garbage!!
• Examples of declarations:!

• correct: { 
    int a = 0, b = 10; 
     ...!
•  Incorrect:* for (int i = 0; i < 10; i++) 

*C99 overcomes  these limitations!
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Address vs. Value!

• Consider memory to be a single huge 
array:!

• Each cell of the array has an address 
associated with it.!

• Each cell also stores some value.!
• Do you think they use signed or 
unsigned numbers? Negative address?!!

• Don’t confuse the address referring to 
a memory location with the value 
stored in that location.!

23" 42"  ..." ..." 101 102 103 104 105 ..."
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Pointers!

• An address refers to a particular 
memory location.  In other words, it 
points to a memory location.!
• Pointer: A variable that contains the 
address of a variable.!

23" 42"  ..." ..." 101 102 103 104 105 ..."

x" y"

Location (address)"

name"
p"

104"
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Pointers!
• How to create a pointer:!
& operator: get address of a variable!

int *p, x; ! p" ?" x" ?"

x = 3; !
p" ?" x" 3"

p =&x; !
p" x" 3"

• How get a value pointed to?!
 * “dereference operator”: get value pointed to!

 printf(“p points to %d\n”,*p); !

Note the “*” gets used 
2 different ways in 
this example.  In the  
declaration to indicate 
that p is going to be a 
pointer,  and in the 
printf to get the 
value pointed to by p."
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Pointers!
• How to change a variable pointed to?!

• Use dereference * operator on left of = 

p" x" 5"*p = 5; 

p" x" 3"
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Pointers and Parameter Passing!
• Java and C pass parameters “by value”!

• procedure/function/method gets a copy of the 
parameter, so changing the copy cannot 
change the original!
 void addOne (int x) { 
  x = x + 1; 
} 
 int y = 3; 
 addOne(y); 

y is still = 3 
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Pointers and Parameter Passing!
• How to get a function to change a value?!
 void addOne (int *p) { 
 *p = *p + 1; 
} 
 int y = 3; 

 addOne(&y); 

y is now = 4 

CS61C L03 Introduction to C (pt 1) (18)! Garcia, Fall 2011 © UCB!

Pointers!

• Pointers are used to point to any data 
type (int, char, a struct, etc.).!
• Normally a pointer can only point to 
one type (int, char, a struct, etc.).!
• void * is a type that can point to 
anything (generic pointer)!

• Use sparingly to help avoid program 
bugs… and security issues…  and a lot 
of other bad things!!
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Peer Instruction Question!
void main(); { 
  int *p, x=5, y; // init 
  y = *(p = &x) + 1; 
  int z; 
  flip-sign(p); 
  printf("x=%d,y=%d,p=%d\n",x,y,p); 
} 
flip-sign(int *n){*n = -(*n)}   

How many syntax+logic  
errors in this C99 code?!

#Errors 
a)1 
b)2 
c)3 
d)4 
e)5 
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Peer Instruction Answer!
void main(); { 
  int *p, x=5, y; // init 
  y = *(p = &x) + 1; 
  int z; 
  flip-sign(p); 
  printf("x=%d,y=%d,p=%d\n",x,y,*p); 
} 
flip-sign(int *n){*n = -(*n);}   

How many syntax+logic  
errors in this C99 code?!

I get 5…  
(signed ptr print is logical err)!

#Errors 
a)1 
b)2 
c)3 
d)4 
e)5 
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And in conclusion…!

• All declarations go at the beginning of 
each function except if you use C99.!
• All data is in memory.  Each memory 
location has an address to use to refer 
to it and a value stored in it.!
• A pointer is a C version of the 
address.!
*   “follows” a pointer to its value!
&   gets the address of a value!
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C vs. Java™ Overview (1/2)!

Java!
• Object-oriented 
(OOP)!

• “Methods”!
• Class libraries of 
data structures!

• Automatic 
memory 
management!

C!
• No built-in object 

abstraction.  Data 
separate from 
methods.!

• “Functions”!
• C libraries are 
lower-level!

• Manual 
memory 
management!

• Pointers !
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C vs. Java™ Overview (2/2)!

Java!
• High memory 
overhead from 
class libraries!

• Relatively Slow!
• Arrays initialize 
to zero!

• Syntax: 
 /* comment */  
// comment 
System.out.print 

C!
• Low memory 
overhead 

• Relatively Fast!
• Arrays initialize 
to garbage!

• Syntax: *  
/* comment */  
// comment  
printf !

* You need newer C compilers to allow Java style  
comments, or just use C99!
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C Syntax: True or False?!

• What evaluates to FALSE in C?!
• 0 (integer)!
• NULL (pointer: more on this later)!
• no such thing as a Boolean*!

• What evaluates to TRUE in C?!
• everything else…!
• (same idea as in scheme: only #f is 
false, everything else is true!)!

*Boolean types provided by C99’s stdbool.h"
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C syntax : flow control!

•  Within a function, remarkably close to 
Java constructs in methods (shows its 
legacy) in terms of flow control!
• if-else 
• switch 
• while and for 
• do-while 


