

CS 61C Fall 2011 Caches

Conceptual Questions: Why do we cache? What is the end result of our caching, in terms of

capability?

To make memory seem faster.

What are temporal and spatial locality? Give high level examples in software of when these

occur.

Temporal locality — if a value is accessed; it is likely to be accessed again soon

Examples: loop indices, accumulators, local variables in functions

Spatial locality — if a value is accessed; values near to it are likely to be accessed again soon

Examples: iterating through an array

Break up an address:

Tag Index Offset

 Offset: ―column index‖, Indexes into a block. (O bits)

 Index: ―row index,‖ Indexes blocks in the cache. (I bits)

 Tag: Where from memory did the block come from? (T bits)

Segmenting the address into TIO implies a geometrical structure (and size) on our cache.

Draw memory with that same geometry!

Cache Vocab:

 Cache hit – found the right thing in the cache! Booyah!

Cache miss – Nothing in the cache block we checked, so read from memory and write to

cache!

Cache miss, block replacement – We found a block, but it had the wrong tag!

Cache
Memory

…

2I+O
 Bytes of

Data!

2O columns

2I

rows

Tag,

Valid, &

Dirty bits
2T Cache

“Images”

Tag = 0

Tag = 1

Tag = 2

CS 61C Fall 2011 Caches

1) Fill in the table assuming a direct mapped cache. (B = byte.)

Address

Bits

Cache

Size

Block Size Tag Bits Index Bits Offset Bits Bits per

Row

16 4KB 4B 4 10 2 37

16 16KB 8B 2 11 3 67

32 8KB 8B 19 10 3 84

32 32KB 16B 17 11 4 146

32 64KB 16B 16 12 4 15

32 512KB 32B 13 14 5 270

64 1024KB 64B 44 14 6 557

64 2048 128B 43 14 7 1068

2) Assume 16 words of memory and an 8 word direct-mapped cache with 2-word blocks (that

starts empty). Classify each of the following WORD memory accesses as hit (H), miss (M),

or miss with replacement (R).

a. 4 M

b. 5 H

c. 2 M

d. 6 M

e. 1 M

f. 10 R

g. 7 H

h. 2 R

3) You know you have 1 MiB of memory (maxed out for processor address size) and a

 16 KiB cache (data size only, not counting extra bits) with 1 KiB blocks.

#define NUM_INTS 8192

int A[NUM_INTS]; // lives at 0x100000

int i, total = 0;

for (i = 0; i < NUM_INTS; i += 128) A[i] = i; // Line 1

for (i = 0; i < NUM_INTS; i += 128) total += A[i]; // Line 2

a) What is the T:I:O breakup for the cache (assuming byte addressing)?

6:4:10

b) Calculate the hit percentage for the cache for the line marked ―Line 1‖.

CS 61C Fall 2011 Caches

On each step, we traverse 512 bytes. But there are 1024 bytes in the cache block. So

we access each cache block twice, missing on the first and hitting on the second. So

the hit rate is 50%

c) Calculate the hit percentage for the cache for the line marked ―Line 2‖.

The upper half of the array is in cache at this point, so we get the exact same

sequence of hits and misses. Therefore the hit rate is again %50

d) How could you optimize the computation?

You could do the second loop in the opposite direction, or you could collapse the two

loops into one.

