

CS 61C Fall 2011 Caches

Conceptual Questions: Why do we cache? What is the end result of our caching, in terms of
capability?

What are temporal and spatial locality? Give high level examples in software of when these
occur.

Break up an address:

Tag Index Offset

 Offset
 Index
 Tag: Where from memory did the block come from? (T bits)

Segmenting the address into TIO implies a geometrical structure (and size) on our cache.
Draw memory with that same geometry!

Cache Vocab:
 Cache hit found the right thing in the cache! Booyah!

Cache miss Nothing in the cache block we checked, so read from memory and write to
cache!
Cache miss, block replacement We found a block, but it had the wrong tag!

Cache
Memory

2I+O Bytes of
Data!

2O columns

2I
rows

Tag,
Valid, &
Dirty bits

2T Cache
Images

Tag = 0

Tag = 1

Tag = 2

CS 61C Fall 2011 Caches

1) Fill in the table assuming a direct mapped cache. (B = byte.)

Address
Bits

Cache
Size

Block Size Tag Bits Index Bits Offset Bits Bits per
Row

16 4KB 4B

16 16KB 8B

32 8KB 8B

32 32KB 16B

32 64KB 16 12 4 15

32 512KB 5

64 64B 14

64 2048 14 1068

2) Assume 16 words of memory and an 8 word direct-mapped cache with 2-word blocks (that

starts empty). Classify each of the following WORD memory accesses as hit (H), miss (M),
or miss with replacement (R).

a. 4
b. 5
c. 2
d. 6

e. 1
f. 10
g. 7
h. 2

3) You know you have 1 MiB of memory (maxed out for processor address size) and a
 16 KiB cache (data size only, not counting extra bits) with 1 KiB blocks.

#define NUM_INTS 8192
int A[NUM_INTS]; // lives at 0x100000
int i, total = 0;
for (i = 0; i < NUM_INTS; i += 128) A[i] = i; // Line 1
for (i = 0; i < NUM_INTS; i += 128) total += A[i]; // Line 2

a) What is the T:I:O breakup for the cache (assuming byte addressing)?
b) Cal
c)
d) How could you optimize the computation?

