
CS61B Tools Documentation
Spring 2006

Paul N. Hilfinger
University of California, Berkeley

Copyright c© 2001, 2002, 2004, 2006 by Paul N. Hilfinger. All rights reserved.

Contents

1 Highlights of GNU Emacs 5

1.1 Basic Concepts . 5

1.2 Important special-purpose commands 7

1.3 Basic Editing . 8

1.3.1 Simple text. 8

1.3.2 Navigation within a buffer. 8

1.3.3 Context searches. 9

1.3.4 Deletion, insertion, and text movement 12

1.3.5 Using the mouse . 14

1.3.6 Replacement . 15

1.3.7 Modes . 16

1.4 Files, buffers, and windows . 17

1.5 On-line documentation . 18

1.5.1 The info browser . 19

1.6 The shell . 20

1.7 Compiling, debugging, and tags . 20

1.7.1 Compilation . 20

1.7.2 Using GDB and GJDB under Emacs 21

1.7.3 Tags . 22

1.8 But wait; there’s more! . 23

2 Basic Compilation: javac and gmake 25

2.1 Compilation and Interpretation . 25

2.2 Where ‘java’ and ‘javac’ find classes 26

2.2.1 The interpreter’s classes . 26

2.2.2 The compiler’s classes . 27

2.3 Multiple classes in one source file . 27

2.4 Compiling multiple files . 27

2.5 Archive files . 28

2.6 The make utility . 28

2.6.1 Basic Operation and Syntax 29

2.6.2 Variables . 32

2.6.3 Phony targets . 33

2.6.4 Details of actions . 34

3

4 CONTENTS

2.6.5 Including makefiles . 34

3 The GJDB Debugger 37
3.1 Basic functions of a debugger . 37
3.2 Preparation . 38
3.3 Starting GJDB . 38
3.4 Threads and Frames . 39
3.5 GJDB Commands . 40
3.6 Common Problems . 44
3.7 GJDB use in Emacs . 45

Chapter 1

Highlights of GNU Emacs

This document describes the major features of GNU Emacs (called “Emacs” here-
after), a customizable, self-documenting text editor. There are versions available for
all our UNIX systems, as well as Windows 95 and Windows NT. In the interests of
truth, beauty, and justice—and to undo, in some small part, the damage Berkeley
has done by foisting vi on an already-unhappy world—Emacs will be the official
CS61B alternative text editor this semester. I have spoken.

Emacs carries with it on-line documentation of most of its commands, along
with a tutorial for first-time users. Section 1.5 describes how to use these facilities.
Because this documentation is available, I have not made attempted to present a
complete Emacs reference manual here.

To run Emacs, simply enter the command emacs to the shell. If you are on a Sun,
it is best to be running under X, so as to get full advantage of the window system.
Within Emacs, as described below, you can edit any number of files simultaneously.
On UNIX and NT systems, you can also run UNIX shells, and compile, execute,
and debug programs. As a result, it should seldom be necessary to leave Emacs
before you are ready to logout.

1.1 Basic Concepts

At any given time, Emacs maintains one or more buffers containing text. Each
buffer may, but need not, be associated with a file. A buffer may be associated
with a UNIX process, in which case the buffer generally contains input and output
produced by that process (see, for example, sections 1.6 and 1.7). Within each
buffer, there is a position called the point, where most of the action takes place.

Emacs displays one or more windows into its buffers, each showing some portion
of the text of some buffer. A buffer’s text is retained even when no window displays
it; it can be displayed at any time by giving it a window. Each window has its
own point (as just described); when only one window displays a buffer, its point
is the same as the buffer’s point. Two windows can simultaneously display text
(not necessarily the same text) from the same buffer with a different point in each
window, although it is most often useful to use multiple windows to display multiple

5

6 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

files. At the bottom of each window, Emacs displays a mode line, which generally
identifies the buffer being displayed and (if applicable) the file associated with it.
At any given time, the cursor, which generally marks the point of text insertion, is
in one of the windows (called the current window) at that window’s point.

At the bottom of Emacs’ display is a single echo area, displaying the contents
of the minibuffer. This is a one-line buffer in which one types commands. It is, for
many purposes, an ordinary Emacs buffer; standard Emacs text-editing commands
for moving left or right and for inserting or deleting characters generally work in it.
To issue a command by name, one types M-x (“meta-x”; this notation is described
below) followed by the name of the command and RET (the return key); the echo
area displays the command as it is typed. It is only necessary to type as much
of the command name as suffices to identify it uniquely. For example, to run the
command for looking at a UNIX manual entry—for which the full command is M-x
manual-entry—it suffices to type M-x man, followed by a RET.

All Emacs commands have names, and you can issue them with M-x. You’ll in-
voke most commands, however, by using control characters and escape sequences to
which these commands are bound. Almost every character typed to Emacs actually
executes a command. By default, typing any of the printable characters executes a
command that inserts that character at the cursor. Many of the control characters
are bound to commonly-used commands (see the quick-reference guide at the end
for a summary of particularly important ones). At any time, it is possible to bind
an arbitrary key or sequence of keys to an arbitrary command, thus customizing
Emacs to your own tastes. Hence, all descriptions of key bindings in this document
are actually descriptions of standard or default bindings.

In referring to non-graphic keys (control characters and the like), we’ll use the
following notations.

ESC denotes the escape character.

DEL denotes the delete character. On HP workstations, the ‘Backspace’ key has the
same effect.

SPC denotes the space character.

RET denotes the result of pressing the ‘Return’ key. (Confusingly, the result of
typing this into a file is not a return character (ASCII code 13), but rather
a linefeed character (ASCII code 10). Nevertheless, Emacs distinguishes the
two keys.)

LFD denotes the result of typing the linefeed key.

TAB denotes the tab (also C-i) key.

C-x denotes the result of control-shifting a character x.

M-α denotes the result of meta-shifting a character α (on our HP workstations
when running the X window system, either ‘Alt’ key serves as a meta-shift
key; it is held down while typing x). Alternatively, one may type M-α as the
two-character sequence ESC followed by α.

1.2. IMPORTANT SPECIAL-PURPOSE COMMANDS 7

C-M-α denotes the result of simultaneously control- and meta-shifting x (on HP
workstations when running X, hold down the Alt and Control keys simulta-
neously with typing α). Alternatively, one may type ESC C-α.

The binding of keys to commands depends on the buffer that currently contains
the cursor. This allows different buffers to respond to characters in different ways. In
this document, we will refer to the set of key bindings in effect within a given buffer
as the (major) mode of that buffer (the term “mode” is actually somewhat ill-defined
in Emacs). There are certain standard modes that are described in section 1.3.7.

Certain commands take arguments, and take these arguments from a variety of
sources. Any command may be given a numeric argument. To enter the number
comprising the digits d0d1 · · · dn as a numeric argument (d0 may also be a minus
sign), type either ‘M-d0d1 · · · dn’ or ‘C-ud0d1 · · · dn’ before the command. When
using C-u, the digits may be omitted, in which case ‘4’ is assumed. The most
common use for numeric arguments is as repetition counts. Thus, M-4 C-n moves
down four lines and M-72 * inserts a line of 72 asterisks in the file. Other commands
give other interpretations, as described below. In describing commands, we will use
the notation ARG to refer to the value of the numeric argument, if present.

When commands prompt for arguments, Emacs will often allow provide a com-
pletion facility. When entering a file name on the echo line, you can usually save
time by typing TAB, which fills in as much of the file name as possible, or SPC which
fills in as much as possible up to a punctuation mark in the file name. Here, “as
much as possible” means as much as is possible without having to guess which of
several possible names you must have meant. A similar facility will attempt to
complete the names of functions or buffers that are prompted for in the echo line.

1.2 Important special-purpose commands

C-g quits the current command. Generally useful for cancelling a M-x-style com-
mand or other multi-character command that you have started entering. When
in doubt, use it.

C-x C-c exits from Emacs. It prompts (in the echo area) if there are any buffers
that have not been properly saved.

C-x u undoes the effects of the last editing command. If repeated, it undoes each
of the preceding commands in reverse order (there is a limit). This is an
extremely important command; be sure to master it. This does not undo
other kinds of commands; the cursor may end up at some rather odd places.

C-l redraws the screen, and positions the current line to the center of the current
window.

8 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

1.3 Basic Editing

The simple commands in this section will enable you to do most of the text enter-
ing and editing that you’ll ordinarily need. Periodic browsing through the on-line
documentation (see section 1.5.1) will uncover many more.

1.3.1 Simple text.

To enter text, simply position the cursor to the desired buffer and character po-
sition (using the commands to be described) and type the desired text. Carriage
return behaves as you would expect. To enter control characters and other special
characters as if they were ordinary characters, precede them with a C-q.

1.3.2 Navigation within a buffer.

The following commands move the cursor within a given buffer. Later sections
describe how to move around between buffers.

C-f moves forward one character (at the end of a line, this goes to the next).

M-f moves forward one “word.”

C-b moves backward one character.

M-b moves backward one word.

C-a moves to the beginning of the current line.

M-a moves backward to next beginning-of-sentence. The precise meaning of “sen-
tence” depends on the mode.

M-[moves backward to next beginning-of-paragraph. The precise meaning of “para-
graph” depends on the mode.

C-e moves to the end of the current line.

M-e moves to the next end-of-sentence.

M-] moves to the next end-of-paragraph.

C-n moves down to the next line (at roughly the same horizontal position, if possi-
ble).

C-p moves up to the previous line.

C-v scrolls the text of the current window up roughly one window-full (i.e., exposes
text later in the buffer). If ARG is supplied, it scrolls up ARG lines.

M-v scrolls the text of the current window down roughly one window-full (i..e, ex-
poses text earlier in the buffer). If ARG is supplied, it scrolls down ARG
lines.

1.3. BASIC EDITING 9

C-M-v scrolls down the text in another window (if any) roughly one window-full. If
ARG is supplied, it scrolls up ARG lines.

M-< moves to the beginning of the current buffer, after setting the mark (see ‘Re-
gions’ below) to the current point. If ARG is supplied, it moves to a point
ARG/10 of the way through the buffer, instead of the beginning.

M-> moves to the end of the current buffer. If ARG is supplied, it moves to a point
ARG/10 of the way back from the end of the buffer, instead of the end.

M-g goes to the line number given by the argument (prompts for a number in the
echo line, if you haven’t supplied an argument).

M-x what-line displays the number of the current line in the current buffer.

Regions. In addition to a point (marked by the cursor in the current window),
each buffer may contain a mark. Everything between the point and mark is called
the current region. The current region typically delimits text to be manipulated by
certain commands. We have set up Emacs so that the current region is shaded.

C-@ sets the mark at the current point, and pushes the previous mark on a ring of
marks. If ARG is present, it instead puts the point at the current mark and
pops a new mark off this ring.

C-SPC is the same as C-@.

C-x C-x exchanges the point and the mark.

M-@ sets the mark after the end of the next word.

M-h sets the region (point and mark) around the current paragraph.

C-x h sets the region (point and mark) around the entire current buffer.

1.3.3 Context searches.

The search commands provide a convenient way to position the cursor quickly over
long distances. One can search either for specific strings or for patterns specified
by regular expressions. Both kinds of searches are carried out incrementally ; that
is, as you type in the target string or pattern, the cursor’s position is continually
changed to point to the first point in the buffer (if any) that matches what you have
typed so far.

C-s searches forward incrementally.

C-s C-s is as for C-s, but initialize the search string to the one used in the last
string search.

C-M-s is as for C-s, but searches for a regular expression.

10 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

C-M-s C-s As for C-M-s, but initialize the search pattern to the last pattern used.

C-r Search backward incrementally.

C-r C-r As for C-r, but initialize the search string as for C-s C-s.

M-x occur prompts for a regular expression and lists each line that follows the
point and contains a match for the expression in a buffer. If you give an
ARG, it will list that number of lines of context around each match.

M-x count-matches prompts for a regular expression and displays in the echo area
the number of lines following the point that contain a match for it.

M-x grep prompts for arguments to the UNIX grep utility (which searches files
for lines matching a given regular expression) and runs it asynchronously,
allowing other editing while the search continues. See the command C-x ‘ in
section 1.7.1 for a description of how to look at each of the lines found in turn.

M-x kill-grep stops a grep that was started by M-x grep.

As you type the search string or pattern, the cursor moves in the appropriate
direction to the first matching string, if any (specifically, to the right end of that
string for a forward search and to the left end for a reverse search). By default, the
case (upper or lower) of characters is ignored as long as the pattern you type contains
no upper-case characters; ‘a’ will each match either ‘a’ or ‘A’. When the pattern
contains at least one upper-case character, the search becomes case-sensitive; ‘a’
will not match ‘A’, nor will ‘A’ match ‘a’. If matching fails at any point, you will
receive a message to that effect in the echo area. While entering a search string or
pattern, certain command characters have altered effects, as follows.

RET ends the search, leaving the point at the string found, and setting the mark at
the original position of the point.

DEL undoes the effect of the last character typed (and not previously DELed),
moving the search back to wherever it was previously.

C-g aborts the search and returns the cursor to where it was at the beginning of
the search.

C-q quotes the next character. That is, it causes the next character to be added
to the search string or pattern as an ordinary character, ignoring any control
action it might normally have. Use this, for example to search for a C-g

character or, in a regular-expression search, to search for a ‘.’.

C-s begins searching forward at the point of the cursor for the next string satisfying
the search string or pattern. If used in a reverse search, therefore, this reverses
the sense of the search. If used at the point of a failing search, this starts the
search over at the beginning of the buffer (“wraps around”).

1.3. BASIC EDITING 11

C-r is like C-s, but searches in the reverse direction, and can reverse the direction
of a forward search.

C-w adds the next word beginning at the cursor to the end of the search string or
pattern. It follows that this has the effect of moving the cursor forward over
that word.

LFD adds the rest of the line to the end of the current search string or pattern.

Other control characters terminate the search, and then have their ordinary effect.

Ordinary searches (C-s and C-r) treat all ordinary characters as search char-
acters. For regular-expression searches, several of these characters have special
significance. See also the on-line documentation.

. matches any character, except end-of-line.

^ matches the beginning of a line (that is, it matches the empty string, and only at
the beginning of a line.)

$ matches the end of a line.

[· · ·] matches any of the characters between the square brackets. A range of char-
acters may be denoted using ‘-’, as in [a-z0-9], which denotes any digit or
letter. To include ‘]’ as one of the characters, put it first. To include ‘-’, use
‘---’. To include ‘^’, do not make it the first character.

[^· · ·] matches any of the characters not included in the ‘· · ·’. Thus, if end-of-line
is not one of the characters, this will match it.

* when following another regular expression, denotes zero or more occurrences of
that regular expression—in other words, an optional occurrence. This char-
acter applies to the immediately preceding regular expression; it has “highest
precedence.” There are special parentheses (see below) for cases where this is
not what you want. Hence, the pattern ‘.*’ denotes any number of charac-
ters, other than end-of-line. The pattern ‘[a-z][a-z0-9]*’ denotes a letter
optionally followed by string of letters, digits, and underscores.

+ is like ‘*’, but denotes at least one occurrence. Thus, ‘[0-9]+’ denotes an integer
literal.

? is like ‘*’, but denotes zero or one occurrence. Hence, the pattern ‘[0-9]+,?’
denotes an integer literal optionally followed by a comma.

\(· · ·\) groups the items ‘· · ·’. Hence, ‘\([0-9]+,\)?’ denotes an optional string
consisting of an integer literal followed by a comma. The pattern ‘\(01\)*
denotes zero or more occurrences of the two-character string ‘01’.

\b matches the empty string at the beginning or end of a word. Hence, ‘\bring\b’
matches “ring” standing alone, but not “string” or “rings”.

12 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

\B matches the empty string, provided that it is not at the beginning or end of a
word.

\| matches a string matching either the regular expression to its left or to its
right. Use ‘\(\)’ to limit what regular expressions it applies to. Thus,
‘\bf[a-z]+\|[0-9]+’ matches any integer literal or any word that begins with
‘f’, while ‘\bf\([a-z]+\|[0-9]+\)’ matches any “word” that begins with ‘f’
and continues with either all letters or with all digits.

\n where n is any digit, denotes the string that matched the pattern within the nth

set of ‘\(\)’ brackets in the current regular expression. Thus, ‘\b\([0-9]+\), *\1’
matches any integer literal that is followed by a comma, an optional space,
and a repetition of the same literal; it matches “23, 23” and “10,10”, but not
“23, 24”.

1.3.4 Deletion, insertion, and text movement

The following commands cover most of what you need for local, small edits.

Deleting text.

DEL deletes the character preceding the cursor. At the beginning of a line, it deletes
the preceding end-of-line character, thus joining the current and preceding
lines.

M-DEL deletes the word preceding the cursor. The deleted word moves to the kill
buffer, described later.

C-w is the same as M-DEL in our version of Emacs. This is not standard, but is
provided to avoid confusion with its common use in the shell.

C-d deletes the character under the cursor (which can be the end-of-line).

M-d deletes the word following the cursor.

C-k deletes the rest of the line following the cursor. If the cursor is on the end-of-
line, delete the end-of-line. The deleted line moves to the kill buffer.

M-\ deletes all horizontal blank space on either side of the cursor.

M-SPC deletes all but one horizontal blank space surrounding the cursor.

C-x C-o on non-blank line, deletes all immediately following blank lines; on isolated
blank line, deletes the line; on other blank lines, deletes all but one.

M-W deletes everything between the point and the mark. In standard Emacs, this
is C-w, but in our version, this is modified to prevent confusion with the same
character in the shell.

1.3. BASIC EDITING 13

The kill buffer. Several of the preceding commands mention the kill buffer. Text
that is deleted is appended to the end of the current kill buffer, and can later be
retrieved and inserted (“pasted” or “yanked”) elsewhere in the text (even in another
buffer different from its original source). Normally, each time a command that does
not append to the kill buffer is executed, the current kill buffer is saved in a ring of
kill buffers, and the next deletion command starts with an empty kill buffer. Hence,
to move a sequence of lines, one can issue a sequence of C-k commands, with no
intervening commands, move to the desired destination, and yank them back (with
C-y).

C-y inserts the contents of the current kill buffer at the cursor, and moves cursor
to end of inserted text. If a numeric value of ARG is supplied, inserts the
ARGth most recent kill buffer in the ring.

C-u C-y inserts current kill buffer, as for C-y, but leaves point unchanged.

M-y when issued immediately after a C-y or M-y, deletes the text inserted by the
C-y or M-y and substitutes the text from the next kill buffer in sequence in
the kill ring.

M-w is the same as M-W, above, but simply adds the text to the kill buffer without
actually deleting it.

C-M-w causes the next command, if a kill command, to append to the end of previous
kill buffer, rather than starting with a new one. This allows you, for example,
to delete lines from several different places and then yank them back into one
place.

Indentation. Indentation generally depends on the mode of the buffer. When
a buffer is associated with a file whose extension (part after the final period in
the file name) is ‘c’ or ‘h’, in particular, it is by default in C mode, in which the
standard indentation referred to below is appropriate for C source programs. With
an extension of ‘cc’ or ‘C’, it is in C++ mode, and with an extension of ‘java’, it is
in Java mode.

TAB indents as appropriate for the current mode. In text files, this is just an ordinary
typewriter-style tab command. In C source files, it indents to the appropriate
point for a standard set of indentation conventions.

LFD is the same as RET TAB. Thus, if in typing in a Java program, you end each
line with LFD instead of RET, your program will be indented as you enter it.

M-; indents for a comment according to the current mode. In C mode, this inserts
/* */.

M-LFD when used inside a comment, will close the comment, if necessary, go to a
new line, and start a properly-indented comment on that line.

14 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

C-x TAB indents the current region “rigidly” by ARGspaces to the right (default
4). Negative arguments indent to the left. Tabs are correctly counted as the
appropriate number of blanks.

C-M-\ indents the current region according to the current mode. For an improperly-
indented C program, for example, this will correct all the indentation within
the region.

Other simple manipulations

C-o inserts a newline after the cursor. This has the same effect as RET C-b (return
and then back up one character).

C-t transposes the character under the cursor with the preceding character. If an
end-of-line is under the cursor, transposes the preceding two characters.

M-t transposes the next word that begins left of the cursor with the word following.

C-x C-t transposes the current and preceding lines.

M-c capitalizes the next word (making all characters other than the first lower case).

M-u converts the next word to all upper case.

M-l converts the next word to all lower case.

1.3.5 Using the mouse

When you are using Emacs with the X window system, you may use the mouse
for simple positioning, text deletion, and text insertion. The three mouse buttons
indicate the operation to be performed, and the mouse pointer (the slanting arrow,
which we’ll usually just call the pointer) usually indicates the position at which to
perform it. In the following, the mouse buttons are called ‘LB’, ‘MB’, and ‘RB’, for
left button, middle button, and right button. We’ll use C-B to indicate the result
of holding down “Control” while pushing button B.

LB places the point and mark at the position (and in the buffer) indicated by the
pointer. You may then drag the mouse with LB depressed; this leaves the
mark at the point you pressed LB and moves the point (and cursor) to the
point at which you release LB, thus defining a new current region.

RB first extends the current region to include all the text between the existing
current region (or the point, if there is no current region) and the pointer.
Next, it puts the text in the current region into the kill buffer, as for M-w above.
When clicked twice for the same text, it also deletes the text. Finally, it also
copies the text into something called the window-system cut buffer. Text in
the window-system cut buffer may be “pasted” (inserted) by MB, as described
below, not only into Emacs buffers, but also into any other X-windows buffer.

1.3. BASIC EDITING 15

MB pastes (inserts) text from the window system cut buffer at the point indicated by
the mouse, and puts the cursor at the beginning and the mark at the end of the
inserted text. This is somewhat like a mouse version of C-y. However, since
it takes its text from the window system cut buffer (common to all windows
on the screen), it allows the insertion of text from or to a window other than
the one running Emacs.

C-LB Displays a menu of buffers to move to and allows you to select one (a mouse
version of C-x b, described later).

You may also use the mouse to select from menus that sprout from the menu
bar at the top of your Emacs screen. The content of these menus depends on the
kind of buffer you are in.

1.3.6 Replacement

The following commands allow you to do systematic replacement of one string or
pattern with another within a given buffer.

M-q performs a query-replace operation. It prompts for a search string and a re-
placement string. Terminate each of the two with a RET. The command will
then display each instance of the search string found, and prompt for its dis-
posal. The options are described below. If ARG is supplied, it will only
match things surrounded by word boundaries, so that if the search string is
“top”, there will be no replacement inside the string “stop” or “topping”. In
standard Emacs, this is M-%.

M-Q is the same as M-q, but replaces patterns designated by regular expressions,
rather than just simple strings. The replacement string may contain in-
stances of ‘\n’, for n a digit, which, as described in the section on reg-
ular expressions, denotes the string matched by the nth regular expression
in ‘\(\)’ braces in the search string. Thus, for example, the search pattern
‘(\([a-z][a-z0-9]+\))’ with the replacement pattern ‘[\1]’ will replace
each C identifier surrounded by parentheses by the same identifier surrounded
by square brackets.

By default, the replacement will preserve the case of the letters replaced if the search
string or pattern has no uppercase letters, and otherwise will use the case supplied
in the replacement string.

At each instance of the search string or pattern, you are prompted for an action.
Here are some common ones.

SPC replaces the indicated occurrence and goes to the next.

DEL keeps the indicated occurrence unchanged and go to the next.

RET exits with no further replacements.

16 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

, makes one replacement, but waits for another SPC or DEL before moving to the
next match.

. makes one replacement and then exits.

! replaces all remaining occurrences without prompting again.

? prints a help message.

C-r enters a recursive edit level. That is, you are put back in ordinary Emacs at
the point of the current occurrence and can edit in the usual manner. Typing
C-M-c then goes back to the query-replace command.

y same as SPC.

n same as DEL.

q same as RET.

In addition to replacement, there are two often-useful commands for deleting
selected lines.

M-x delete-matching-lines prompts for a regular expression and deletes (with-
out prompting) each line after the point that contains a match for it.

M-x delete-non-matching-lines prompts for a regular expression and deletes
each line after the point that does not contain a match for it.

1.3.7 Modes

Certain collections bindings of keys to commands and other parameter settings are
referred to as modes. When such collections simply modify a few characteristics,
they are called minor modes. Emacs will automatically establish a mode for buffers
containing certain files depending on the name of their associated file. Thus, buffers
with extensions ‘.c’ and ‘.h’ start out in C mode, which affects the behavior of tab
commands, for example. The shell buffer runs in Shell mode. Files with unclassifi-
able names generally start in Fundamental mode. For routine work, you will seldom
need to worry about these modes.

There is one useful minor mode that’s worth knowing about, however.

M-x auto-fill-mode toggles (reverses the setting) of auto-fill mode, which by de-
fault is usually off. In auto-fill mode, lines get broken automatically as they
are being typed when they get too long. When you are typing comments in C
programs, auto-fill mode will automatically start a new comment on the next
line when the current line gets near to filling up.

1.4. FILES, BUFFERS, AND WINDOWS 17

1.4 Files, buffers, and windows

Each buffer has a name. By default, buffers that are associated with particular files
have the name of that file (not including the name of the directory containing it),
possibly followed by a number in angle brackets to distinguish multiple files (from
different directories) with the same name.

C-x C-f prompts for a file name and sets the current window to displaying that file
in a buffer by the same name. If a buffer displaying that file already exists,
this command merely switches the window to that buffer. If the file does not
exist, the buffer is initially empty. The buffer is subsequently associated with
the file. This process is called finding the file.

C-x 4 C-f prompts for a file name, goes to the next window on the screen (creating
a new one, if there is only one), and then acts like C-x C-f.

C-x C-s saves the current buffer in its associated file, if the buffer has been mod-
ified. If the file being saved exists, then the old version is first renamed to
have a tilde (~) appended to its name, if no such file yet exists.

C-x C-w prompts for a file name and saves the current buffer into that file. Gen-
erally, it is preferable and safer to use C-x C-f or C-x 4 C-f and then use
C-x C-s, but sometimes this command is handy.

C-x i prompts for a file name and inserts that file at the point. It does not associate
the inserted file with the current buffer.

M-x revert-buffer throws away the contents of the current buffer and restores
the contents of the associated file. It will ask you to confirm these actions
before taking them.

C-x o makes another window on the screen (if any) the current window.

C-x 0 deletes the current window, expanding another window to take its place.
The buffer being displayed in the current window is not affected.

C-x 1 makes the current window the only window on the screen, deleting all others.
The buffers being displayed in the deleted windows are not affected.

C-x 2 splits the current window into two vertically (one on top of the other), both
displaying the same buffer.

C-x 3 splits the current window into two horizontally (beside each other), each
displaying the same buffer.

C-x b prompts for a buffer name and switches the current window to that buffer.
When trying to move to a buffer associated with a file, it is better to use the
file finding commands.

C-x C-b lists the active buffers in a window.

18 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

C-x k prompts for a buffer name and deletes that buffer, displaying some other
buffer in the current window. You will be warned if the contents of the buffer
have been modified and not yet saved.

Auto-saving and recovery Buffers that are associated with files are periodically
saved (“auto-saved”) in files whose names begin and end with ‘#’. After a crash,
you can return yourself to the point at which the last auto-save of a given file took
place by using the following command in place of C-x C-f or C-x 4 C-f.

M-x recover-file prompts for a file name, F . It then tries to recover the contents
of that file from an auto-save file (named #F#) in the same directory, if such
a file exists and is younger than the any file named F in the directory. After
completing this command, C-x C-s will save the recovered file to F .

1.5 On-line documentation

The help command, C-h, provides a variety of useful documentation. The character
following C-h indicates the specific kind of service desired; the descriptions of several
of these follow.

C-h a prompts for a pattern (regular expression) and displays a buffer containing
all commands whose name contains a match to that pattern, together with
a short description and the key sequence to which the command is bound, if
any.

C-h b displays a buffer containing all bindings of commands to keys. The display is
in two parts: the global bindings that apply by default in any buffer, and the
local bindings that apply only when one is in the current buffer, and override
any global binding in that buffer.

C-h f prompts for a function name and then displays its full documentation in a
buffer.

C-h C-h documents the help command itself.

C-h i runs the ‘info’ documentation reader (see below).

C-h k prompts for a command key sequence and describes the function invoked by
that sequence.

C-h m prints documentation about the mode of the current buffer.

C-h t puts you into an Emacs tutorial.

C-h w prompts for a function name and tells what key, if any, invokes it.

In addition, there is a simple interface to the standard UNIX ‘man’ command.

1.5. ON-LINE DOCUMENTATION 19

M-x manual-entry prompts for a topic (a UNIX command or subprogram name,
usually), and displays the man page for it, if any, in a buffer. The buffer is a
perfectly ordinary buffer; you may put the cursor in it and move around using
ordinary Emacs navigational commands.

1.5.1 The info browser

The key sequence C-h i invokes the documentation browsing system, info. Actu-
ally, this is little more than a buffer with some special bindings to the keys. Aside
from the special bindings, the ordinary Emacs commands will work while inside the
info buffer. At any time, the info buffer, whose name is *info*, contains a node,
a section of text documenting something. These nodes are connected to each other
in such a way that one can move quickly from one node to another that covers a
related topic. Some nodes contain menus, indicated by lines that begin

* Menu:

The lines after this give the names of other nodes, and descriptions of their contents.
One such entry reads as follows.

* Commands:: Named functions run by key sequences to do editing.

The word(s) between the asterisk and the double-colon name another node. The
following key commands, defined only when in the buffer *info*, allow one to move
through the documentation. They are only a few of the ones provided.

m prompts for the name of a node from the menu in the current buffer and dis-
plays that node. You need only enter enough to identify the desired entry
unambiguously; case is ignored.

f follows a cross-reference. Cross references are indicated in the text of a node by a
phrase of the form “* Note foo::”. One follows them by typing ‘f’ followed
by the name (foo) of the referenced node, as for the ‘m’ command.

l goes back to the last-visited node.

u goes up to the parent of this node. The definition of parent is actually arbitrary,
but is usually a node that contains the current one in its menu.

d returns to the top (initial) node of the Info system.

q suspends the browser and goes back to where you were when you issued C-h i.

. returns to the beginning of the text of the current node.

? furnishes help about the browser commands.

20 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

1.6 The shell

It is possible to run a UNIX shell under Emacs, and this allows any number of
useful effects. The command M-x shell moves to a buffer named *shell* running
a UNIX shell (creating it if necessary). Anything typed into this buffer is sent to
the shell, just it would be outside of Emacs. Any output produced as a result of
the commands sent to the shell is placed at the end of the shell buffer. Because
the shell is running in an Emacs window, the contents of the shell can be edited
and navigated freely, and the entire record of the input and output to the shell is
available at all times. A few keys have slightly different-from-usual meanings in the
shell buffer.

RET sends whatever line the cursor is on to the shell and moves to the end of the
shell buffer. Hence, one can repeat a command by placing the cursor anywhere
in it and typing RET.

TAB attempts to complete the immediately preceding file name.

C-c C-c is the same as a single C-c outside Emacs.

C-c C-d is the same as C-d (end-of-file) outside Emacs.

C-c C-z is the same as C-z outside Emacs.

C-c C-u kills the current line of input to the shell.

It is sometimes useful to run a single shell command over a region of text in a buffer.

M-| prompts for a shell command and executes it, giving the current region as the
standard input. If the M-| is preceded by C-u, the output of the command
replaces the region. Otherwise, the output goes to a separate buffer. For exam-
ple, to sort the lines in the current region, enter the command C-u M-| sort.

1.7 Compiling, debugging, and tags

Emacs provides rather nice ways of compiling programs, correcting any compilation
errors, and debugging the results. It is so much more convenient than entering
compilation commands directly from a shell that there is no excuse not to use it.

1.7.1 Compilation

M-x compile prompts for a shell command, and then executes that command in
a special buffer, named *compilation*. The current file at the time the
M-x compile is issued determines the directory in which the shell command
executes. The default command is simply make -k. Assuming you follow
the convention of putting an appropriate make input file named makefile or
Makefile in each source directory, this command will generally “do the right
thing” for the files in that directory. While the compilation proceeds, you are
free to edit or use the *shell* buffer.

1.7. COMPILING, DEBUGGING, AND TAGS 21

C-x ‘ finds the next error message in the buffer *compilation* (if any), finds the
source files and line referred to by the error message, and displays the error
message in one window and the source file in another. Thus, after a com-
pilation is complete (actually, even while it proceeds), you can step through
the error messages produced, going automatically to the offending points in
the source file so that they can be corrected. The buffer *compilation* also
contains the output from the M-x grep command described in section 1.3.3.

M-x kill-compiler cancels a compilation started by M-x compile, if any.

1.7.2 Using GDB and GJDB under Emacs

The GNU debugger, GDB, is an interactive source-level debugger for C, C++,
and several other languages. It can be run under Emacs, which provides a few
rather nifty additional features. Full on-line documentation of gdb is available
using the C-h i command in Emacs. The command M-x gdb will prompt for an
executable file name, and then run GDB on that file, displaying the interaction in
a buffer that acts much like a shell buffer described previously. Within that buffer,
however, several commands have a slightly different meaning. In addition, whenever
GDB displays the current position in the program (for example, after a step, at a
breakpoint, or after an interrupt), Emacs will try to display the indicated source
file and line in another window, with an arrow (‘=>’) pointing at the corresponding
line in the source text (this arrow is not actually in the file being displayed). At any
given time, GDB has a notion of the “current call frame” being examined. Initially,
this is the function containing the current position in the program, but the ‘up’ and
‘down’ commands will change it “up and down the call chain” to the function that
called the current call frame or was called from it. As this happens, the gdb more
of Emacs will display the source code around the current call frame.

GJDB is my adaptation of Sun’s rather pitiful Java debugger, jdb, which is
distributed with their Java Developer’s kit. My version makes it a bit more useful
for our purposes, and also sufficiently similar to GDB that this section can apply to
both commands. The command M-x gjdb starts GJDB, prompting for the name
of the main class—the one containing your main procedure.

The following commands are peculiar to GDB and GJDB buffers.

C-c C-n performs a ‘next’ command, which steps to the next line in the current
function.

C-c C-s performs a ‘step’ command, which steps to the next line in the source
program to be executed, stopping at the beginning of any function that gets
called.

C-c C-i performs a GDB ‘stepi’ command, which steps to the next machine-
language instruction. This only makes sense in GDB, not GJDB, and is not
usually used unless you are programming in assembly language.

C-c < performs an ‘up’ command, which causes GDB or GJDB to show the caller
up to the frame of current frame’s caller.

22 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

C-c > performs a ‘down’ command (opposite of ‘up’).

C-c C-r performs a ‘finish’ command (continues from last breakpoint).

C-c C-b sets a breakpoint at the current position in the program (as indicated by
the position of the ‘=>’ arrow).

C-c C-d delete a breakpoint (if any) at the current position in the program (as
indicated by the position of the ‘=>’ arrow).

In addition, within any source file buffer, there is the following command.

C-x SPC puts a break point at the point in the program indicated by the cursor.
(Actually, the official command is C-x C-a C-b, but I can never remember
that.)

1.7.3 Tags

In UNIX terminology, a tag table is an index that tells how to find the definition
of any certain identifiers (‘tags’) defined in some collection of source files. In effect,
it provides a smart, multi-file search that is particularly useful when navigating in
non-trivial directories of source files. Typically, you set things up by going into the
directory containing the source text to be indexed and issuing the UNIX command

etags options files

where files is a list of all the source files that need to be indexed. This creates
a file named ‘TAGS’ containing the tag table. For C programs, the tags are the
names of functions defined in the named source files. The -t option causes etags

to record typedef declarations as well. The tag table produced is organized in such
a way that simple edits to a source file will not invalidate it. The following Emacs
commands deal with tag tables.

M-x visit-tags-table prompts for the name of a tags table file, and uses its
contents in future tag-related searches.

M-. prompts for a tag and then positions the current window in the file containing
its first definition and puts the cursor on that definition. You may also give a
null response (just RET), in which case the word before or around the point is
used as the tag.

C-u M-. finds the next alternate definition of the last tag specified.

C-x 4 . is the same as M-., but displays the text containing the tag in the other
window instead of the current one.

M-x tags-search prompts and searches for a regular expression as for C-M-s, but
is does a non-incremental search through all the files given in the currently-
visited tag table.

1.8. BUT WAIT; THERE’S MORE! 23

M-x tags-query-replace acts like M-Q, but looks through all the files given in the
currently-visited tag table.

M-, restarts the last tags-search or tags-query-replace from the current loca-
tion of the point.

M-x tags-apropos prompts for a regular expression and displays a list of all tags
in the currently-visited table that match it.

1.8 But wait; there’s more!

As indicated at the beginning, this is not a complete reference manual. It has
not covered scrolling sideways, tab setting, the mail system, the Emacs internal
Lisp dialect, automatic abbreviation, the spelling checker, the directory editor, the
change-log editor, or how to replace all groups of lines of your program that are
indented more than ARG spaces by ‘. . .’1. You can learn about these and other
topics by using C-h i. You might also try typing C-h f SPC C-x o, which creates
a buffer containing the names of all Emacs functions and then puts the cursor there
so that you can scroll through and look for likely-sounding names.

Just use it. Every session is an adventure.

1You probably think I’m kidding, don’t you? Guess again.

24 CHAPTER 1. HIGHLIGHTS OF GNU EMACS

Chapter 2

Basic Compilation: javac and

gmake

[The discussion in this section applies to Java 1.5 tools from Sun Microsystems.
Tools from other manufacturers and earlier tools from Sun differ in various details.]

Programming languages do not exist in a vacuum; any actual programming done
in any language one does within a programming environment that comprises the
various programs, libraries, editors, debuggers, and other tools needed to actually
convert program text into action. This document discusses the tools that translate
programs into executable form and then execute them.

2.1 Compilation and Interpretation

The Scheme environment that you used in CS61A was particularly simple. It pro-
vided a component called the reader, which read in Scheme-program text from files
or command lines and converted it into internal Scheme data structures. Then a
component called the interpreter operated on these translated programs or state-
ments, performing the actions they denoted. You probably weren’t much aware of
the reader; it doesn’t amount to much because of Scheme’s very simple syntax.

Java’s more complex syntax and its static type structure (as discussed in lecture)
require that you be a bit more aware of the reader—or compiler, as it is called in the
context of Java and most other “production” programming languages. The Java
compiler supplied by Sun Microsystems is a program called javac on our systems.
You first prepare programs in files (called source files) using any appropriate text
editor (Emacs, for example), giving them names that end in ‘.java’. Next you
compile them with the java compiler to create new, translated files, called class files,
one for each class, with names ending in ‘.class’. Once programs are translated
into class files, there is a variety of tools for actually executing them, including
Sun’s java interpreter (called ‘java’ on our systems), and interpreters built into
products such as Netscape or Internet Explorer. The same class file format works
(or is supposed to) on all of these.

In the simplest case, if the class containing your main program or applet is called

25

26 CHAPTER 2. BASIC COMPILATION: JAVAC AND GMAKE

C, then you should store it in a file called C.java, and you can compile it with the
command

javac C.java

This will produce .class files for C and for any other classes that had to be com-
piled because they were mentioned (directly or indirectly) in class C. For homework
problems, this is often all you need to know, and you can stop reading. However,
things rapidly get complicated when a program consists of multiple classes, espe-
cially when they occur in multiple packages. In this document, we’ll try to deal
with the more straightforward of these complications.

2.2 Where ‘java’ and ‘javac’ find classes

Every Java class resides in a package (a collection of classes and subpackages). For
example, the standard class String is actually java.lang.String: the class named
String that resides in the subpackage named lang that resides in the outer-level
package named java. You use a package declaration at the beginning of a .java

source file to indicate what package it is supposed to be in. In the absence of
such a declaration, the classes produced from the source file go into the anonymous
package, which you can think of as holding all the outer-level packages (such as
java).

2.2.1 The interpreter’s classes

When the java program (the interpreter) runs the main procedure in a class, and
that main procedure uses some other classes, let’s say A and p.B, the interpreter
looks for files A.class and B.class in places that are dictated by things called class
paths. Essentially, a class path is a list of directories and archives (see §2.5 below
for information on archives). If the interpreter’s class path contains, let’s say, the
directories D1 and D2, then upon encountering a mention of class A, java will look
for a file named D1/A.class or D2/A.class. Upon encountering a mention of p.B,
it will look for D1/p/B.class or D2/p/B.class.

The class path is cobbled together from several sources. All Sun’s java tools
automatically supply a bootstrap class path, containing the standard libraries and
such stuff. If you take no other steps, the only other item on the class path will
be the directory ‘.’ (the current directory). Otherwise, if the environment variable
CLASSPATH is set, it gets added to the bootstrap class path. In past years, our
standard class setup had ‘.’ and the directory containing the ucb package (with
our own special classes, lovingly concocted just for you), which we set up with the
command

setenv CLASSPATH .:/home/ff/cs61b/lib/java/classes

(the colon is used in place of comma (for some reason) to separate directory names).
The interpreter and compiler would then find the definition of a class such as
ucb.io.StdIO in

2.3. MULTIPLE CLASSES IN ONE SOURCE FILE 27

/home/ff/cs61b/lib/java/classes/ucb/io/StdIO.class

These days, we use archive files instead, as described below in §2.5.

2.2.2 The compiler’s classes

The compiler looks in the same places for .class files, but its life is more compli-
cated, because it also has to find source files. By default, when it needs to find the
definition of a class A, it looks for file A.java in the same directories it looks for
A.class. This is the easiest case to deal with. If it does not find A.class, it will
automatically compile A.java. To use this default behavior, simply make sure that
the current directory (‘.’) is in your class path (as it is in our default setup) and
put the source for a class A (in the anonymous package) in A.java in the current
directory, or for a class p.B in p/B.java, etc., using the commands

javac A.java

javac p/A.java

respectively, to compile them.
It is also possible to put source files, input class files, and output class files (i.e.,

those created by the compiler) in three different directories, if you really want to
(I don’t think we’ll need this). See the -sourcepath and -d options in the on-line
documentation for javac, if you are curious.

2.3 Multiple classes in one source file

In general, you should try to put a class named A in a file named A.java (in the
appropriate directory). For one thing, this makes it possible for the compiler to
find the class’s definition. On the other hand, although public classes must go into
files named in this way, other classes don’t really need to. If you have a non-public
class that really is used only by class A, then you can put it, too, into A.java. The
compiler will still generate a separate .class file for it.

2.4 Compiling multiple files

Java source files depend on each other; that is, the text of one file will refer to
definitions in other files. As I said earlier, if you put these source files in the right
places, the compiler often will automatically compile all that are needed even if
it is only actually asked to compile one “root” class (the one containing the main
program or main applet). However, it is possible for the compiler to get confused
when (a) some .java files have already been compiled into .class files, and then (b)
subsequently changed. Sometimes the compiler will recompile all the necessary files
(that is, the ones whose source files have changed or that use classes whose source
files have changed), but it is a bit dangerous to rely on this for the Sun compiler.
The compiler also can’t find class definitions if you “hide” them by putting, say,
several classes into one file. The compiler guesses that class A.B is in file A/B.java.

28 CHAPTER 2. BASIC COMPILATION: JAVAC AND GMAKE

If it isn’t, then it gives up. You can avoid both of these problems by asking listing
all the necessary files for javac explicitly:

javac A.java p/B.java root.java

Since this is tedious to write, it is best to rely on a makefile to do it for you, as
described below in §2.6.

2.5 Archive files

For the purposes of this course, it will be sufficient to have separate .class files in
appropriate directories, as I have been describing. However in real life, when one’s
application consists of large numbers of .class files scattered throughout a bunch
of directories, it becomes awkward to ship it elsewhere (say to someone attempting
to run your Web applet remotely). Therefore, it is also possible to bundle together
a bunch of .class files into a single file called a Java archive (or jar file). You can
put the name of a jar file as one member of a class path (instead of a directory),
and all its member classes will be available just as if they were unpacked into the
directory structure described in previous sections.

The utility program ‘jar’, provided by Sun, can create or examine jar files. Typ-
ical usage: to form a jar file stuff.jar out of all the classes in package myPackage,
plus the files A.class and B.class, use the command

jar cvf stuff.jar A.class B.class myPackage

This assumes that myPackage is a subdirectory containing just .class files in pack-
age myPackage. To use this bundle of classes, you might set your class path like
this:

setenv CLASSPATH .:stuff.jar:other directories and archives

2.6 The make utility

Even relatively small software systems can require rather involved, or at least te-
dious, sequences of instructions to translate them from source to executable forms.
Furthermore, since translation takes time (more than it should) and systems gener-
ally come in separately translatable parts, it is desirable to save time by updating
only those portions whose source has changed since the last compilation. However,
keeping track of and using such information is itself a tedious and error-prone task,
if done by hand. Therefore, most programming environments provide some kind of
project or compilation-control facility. The UNIX make utility is a conceptually sim-
ple and general example. It accepts as input a description of the interdependencies
of a set of source files and the commands necessary to compile them, known as a
makefile; it examines the ages of the appropriate files; and it executes whatever com-
mands are necessary, according to the description. For further convenience, it will
supply certain standard actions and dependencies by default, making it unnecessary
to state them explicitly.

2.6. THE MAKE UTILITY 29

There are numerous dialects of make, both among UNIX installations and (under
other names) in programming environments for personal computers. In this course,
I will use a version known as gmake1. Though conceptually simple, the gmake utility
has accreted features with age and use, and is rather imposing in the glory of its
full definition. This document describes only the simple use of gmake.

In addition to compilation (or re-compilation) control, there are other uses for
gmake. It is useful in cases where one needs some kind of preprocessing: where the
Java source files themselves result from applying some program to other inputs.
The makefiles themselves also serve as a useful repository for scripts that perform
numerous tasks incidental to compilation. I use them to build course material and
copy it to where others can get to it.

2.6.1 Basic Operation and Syntax

Figure 2.1 is a sample makefile for compiling a simple editor program, edit, from
eight .java files.

This file consists five rules. A rule consists of a line containing two lists of names
separated by a colon, followed by one or more lines beginning with tab characters.
Any line may be continued, as illustrated, by putting a backslash at the very end,
which essentially acts like a space, combining the line with its successor. The ‘#’
character indicates the start of a comment that goes to the end of that line.

The names preceding the colons are known as targets; they are most often the
names of files that are to be produced. The names following the colons are known as
dependencies of the targets. They usually denote other files (possibly, other targets)
that must be present and up-to-date before the target can be processed. The lines
starting with tabs2 that follow the first line of a rule are called actions. They are
shell commands (that is, commands that you could type in response to the Unix
prompt) that get executed in order to create or bring up to date the target of the
rule (we’ll use the generic term update for the process of determining whether action
is necessary on a particular target and then (if needed) building or rebuilding it).

Each rule says, in effect, that to update the targets, each of the dependencies
must first be updated (recursively). Next, if a target does not exist (that is, if no
file by that name exists) or if it does exist but is older than one of its dependencies
(so that one of its dependencies was changed after the target was last updated), the
actions of the rule are executed to create or update that target. The program will
complain if any dependency does not exist and there is no rule for creating it. To
start the process off, the user who executes the gmake utility specifies one or more
targets to be updated. The first target of the first rule in the file is the default.

1For “GNU make,” GNU being an acronym for “GNU’s Not Unix.” gmake is “copylefted” (it
has a license that requires free use of any product containing it). It is also more powerful than the
standard make utility.

2Tabs, not blanks. Yes, I know: this is a really irritating design, because if you ever make the
mistake of substituting blanks for the tab, you get errors (with very unhelpful messages). The make

utility is of rather ancient lineage, and the file format has been this way since before most of you
were born (literally).

30 CHAPTER 2. BASIC COMPILATION: JAVAC AND GMAKE

Makefile for a simple editor

The jar file contains the entire collection of classes

constituting the editor.

edit.jar: edit.class commands.class display.class files.class

jar cf edit.jar edit.class commands.class display.class \

files.class

edit.class: edit.java commands.java display.java files.java

javac -g edit.java commands.java display.java \

files.java

commands.class: edit.java commands.java display.java files.java

javac -g edit.java commands.java display.java \

files.java

display.class: edit.java commands.java display.java files.java

javac -g edit.java commands.java display.java \

files.java

files.class: edit.java commands.java display.java files.java

javac -g edit.java commands.java display.java \

files.java

Figure 2.1: Sample makefile for an editor program. Adapted from “GNU Make: A
Program for Directing Recompilation” by Richard Stallman and Roland McGrath,
1988.

In the example above, edit.jar is the default target. The first step in updating
it is to update all the files listed as dependencies (a bunch of .class files). The
remaining rules tell how to update each of these .class files. As you can see, they
all look pretty much the same, and say that to update X.class:

First update all the source files edit.java, command.java, etc. Next,
if X.class is missing or is older than any of these source files, then ex-
ecute javac on all the source files.

We chose to compile all the source files together like this because otherwise it is
possible for the compiler to get confused by old .class files that are still lying
around.

Updating the source (.java) files is easy. There are no rules for any of them,
so gmake simply insists that they all exist in order to be considered up to date.

Now edit.class, for example, is up to date if it is younger (was created more
recently) than all the files edit.java, command.java, and so forth. If instead it is
older, gmake assumes that that one of those source files has been changed since the

2.6. THE MAKE UTILITY 31

last compilation that produced edit.class and must be “rebuilt.” Of course, if
edit.class does not exist, then gmake also knows it has to be rebuilt. If rebuild-
ing is necessary, gmake executes the action “javac -g edit.java commands.java

...”, producing new .class files. In our particular case, if any one of the .class

files needs to be rebuilt, they are all rebuilt. If two of them need to be rebuilt
(let’s say edit.class and files.class), then gmake will execute the action for
one of them and then, when it checks the other .class file, will discover that it has
already been updated. Thus, you needn’t worry that the javac command will be
executed more than once.

Once all the .class files are up-to-date, gmake will check to see if any of them
are younger than edit.jar (or if edit.jar does not exist). If any of the class files
had to be rebuilt, then of course it will be younger, and gmake will execute the
indicated action: “jar cf edit.jar....”

To invoke gmake for this example, one issues the command

gmake -f makefile-name target-names

where the target-names are the targets that you wish to update and the makefile-
name given in the -f switch is the name of the makefile. By default, the target is
that of the first rule in the file. Furthermore, you may (and usually do) leave off
-f makefile-name, in which case it defaults to either Makefile, makefile, or (in
the case of gmake only) GNUmakefile, whichever exists. It is typical to arrange that
each directory contains the source code for a single principal program. By adopting
the convention that the rule with that program as its target goes first, and that the
makefile for the directory is named Makefile, you can arrange that, by convention,
issuing the command gmake with no arguments in any directory will update the
principal program of that directory.

It is possible to have more than one rule with the same target, as long as no
more than one rule for each target has an action. Thus, I can also write the latter
part of the example above as follows:

edit.class:

javac -g edit.java commands.java display.java files.java

commands.class:

javac -g edit.java commands.java display.java files.java

display.class:

javac -g edit.java commands.java display.java files.java

files.class:

javac -g

edit.class: edit.java commands.java display.java files.java

commands.class: edit.java commands.java display.java files.java

display.class: edit.java commands.java display.java files.java

files.class: edit.java commands.java display.java files.java

32 CHAPTER 2. BASIC COMPILATION: JAVAC AND GMAKE

The order in which these rules are written is irrelevant. Which order or grouping
you choose is largely a matter of taste, aside from which is the first (default) target.

Next, you can combine rules with the same dependencies and action. For exam-
ple:

edit.class commands.class display.class files.class

javac -g edit.java commands.java display.java files.java

edit.class commands.class display.class files.class: edit.java \

commands.java display.java files.java

or just

edit.class commands.class display.class files.class: edit.java \

commands.java display.java files.java

javac -g edit.java commands.java display.java files.java

The example of this section illustrates the concepts underlying gmake. The rest
of gmake’s features exist mostly to enhance the convenience of using it.

2.6.2 Variables

You can clarify the example from §2.6.1 considerably and eliminate redundancy by
defining variables to contain the names of the files.

Makefile for simple editor

JFLAGS = -g

JAVA_SRCS = edit.java \

commands.java \

display.java \

files.java

CLASSES = edit.class commands.class display.class files.class

edit.jar : $(CLASSES)

jar cf edit.jar $(CLASSES)

$(CLASSES): $(JAVA_SRCS)

javac $(JFLAGS) $(JAVA_SRCS)

The (continued) line beginning “JAVA SRCS =” defines the variable JAVA SRCS, which
can later be referenced as “$(JAVA SRCS)”. These later references cause the defi-
nition of JAVA SRCS to be substituted verbatim before the rule is processed. It is
somewhat unfortunate that both gmake and the shell use ‘$’ to prefix variable ref-
erences; gmake defines ‘$$’ to be simply ‘$’, thus allowing you to send ‘$’s to the
shell in actions, where needed.

2.6. THE MAKE UTILITY 33

You will sometimes find that you need a value that is just like that of some
variable, with a certain systematic substitution. For example, given a variable
listing the names of all source files, you might want to get the names of all resulting
.class files. You can rewrite the definition of CLASSES above to get this.

CLASSES = $(JAVA_SRCS:.java=.class)

The substitution suffix ‘:.java=.class’ specifies the desired substitution. I now
have variables for both the names of all sources and the names of all class files
without having to repeat a lot of file names (and possibly make a mistake). (I have
assumed here that each source file contains a single class whose name is derived
from the source file. You can’t use this trick if that isn’t so.)

Variables may also be set in the command line that invokes gmake. For exam-
ple, the makefile above contains what might look like an unnecessary definition of
JFLAGS. However, defining it like that allows one to write:

gmake JFLAGS="-g -deprecation" ...

which passes an extra flag to javac (this one happens to give a fuller explanation
of certain warning messages). Variable definitions in the command lines override
those in the makefile, which allows the makefile to supply defaults.

2.6.3 Phony targets

It is often useful to have targets for which there are never any corresponding files.
If the actions for a target do not create a file by that name, it follows from the
definition of how gmake works that the actions for that target will be executed each
time gmake is applied to that target (because it will think the target is missing). A
common use is to put a standard “clean-up” operation into each of your makefiles,
specifying how to get rid of files that can be reconstructed, if necessary. For example,
you will often see a rule like this in a makefile.

.PHONY: clean

clean:

rm -f *.class *~

Every time you issue the shell command “gmake clean,” this action will execute,
removing all .class files and Emacs old-version files.

The special .PHONY target tells gmake that clean is not a file, and is instead
just the name of a target that is always out of date. Therefore, when you make
the “clean” target, gmake will always execute the rm command, regardless of what
files happen to be lying around. In effect, .PHONY tells gmake to treat clean as a
command.

Another possible use is to provide a standard way to run a set of tests on your
program—what are typically known as regression tests—to see that it is working
and has not “regressed” as a result of some change you’ve made. For example, to
cause the command

34 CHAPTER 2. BASIC COMPILATION: JAVAC AND GMAKE

make check

to feed a test file through our editor program and check that it produces the right
result, use:

.PHONY: check

check: edit

rm -f test-file1

java edit < test-commands1

diff test-file1 expected-test-file1

where the test input file test-commands1 presumably contains editor commands
that are supposed to produce a file test-file1, and the file expected-test-file1
contains what is supposed to be in test-file1 after executing those commands.
The first action line of the rule clears away any old copy of test-file1; the second
runs the editor and feeds in test-commands1 through the standard input, and the
third compares the resulting file with its expected contents. If either the second or
third action fails, gmake will report that it encountered an error.

2.6.4 Details of actions

By default, each action line specified in a rule is executed by the Bourne shell (as
opposed to the C shell, which, most unfortunately, is more commonly used here).
For the simple makefiles we are likely to use, this will make little difference, but be
prepared for surprises if you get ambitious.

The gmake program usually prints each action as it is executed, but there are
times when this is not desirable. Therefore, a ‘@’ character at the beginning of an
action suppresses the default printing. Here is an example of a common use.

edit.jar : $(CLASSES)

@echo Creating edit.jar ...

@jar cf edit.jar $(CLASSES)

@echo Done

The result of these actions is that when gmake executes this final step for the edit

program, the only thing you’ll see printed is a line reading “Creating edit.jar

...” and, at the end of the step, a line reading “Done”.
When gmake encounters an action that returns a non-zero exit code, the UNIX

convention for indicating an error, its standard response is to end processing and
exit. The error codes of action lines that begin with a ‘-’ sign (possibly preceded by
a ‘@’) are ignored. Also, the -k switch to gmake will cause it to abandon processing
only of the current rule (and any that depend on its target) upon encountering an
error, allowing processing of “sibling” rules to proceed.

2.6.5 Including makefiles

A good way to create makefiles is to have a template that you include in your
particular makefile—something like the example in Figure 2.2. We’ve prepared one
like this already, so that in the very simplest case, your makefile can contain just:

2.6. THE MAKE UTILITY 35

JAVA_SRCS = edit.java commands.java display.java files.java

include $(MASTERDIR)/lib/java.Makefile.std

As you can probably guess, the include line is a special command that essentially
gets replaced by the contents of the named file.

Figure 2.2 illustrates what such a template file might look like. It uses one
obscure new feature that makes it possible to partially define an action, and allow
others to add to it. The definition of the phony target clean uses two colons rather
than one. This is a signal that there may be other “double-colon” rules for clean,
complete with actions. They will all get used (in the order encountered). For
example, if you include this particular template in a place where you want to define
additional clean-up actions besides the ones defined in the template, you can write:

JAVA_SRCS = edit.java commands.java display.java files.java

include $(MASTERDIR)/lib/java.Makefile.std

clean::

rm -rf test-output

which will cause gmake clean to remove the directory test-output as well as the
class files and Emacs-generated files removed in the template.

36 CHAPTER 2. BASIC COMPILATION: JAVAC AND GMAKE

Standard definitions for make utility: Java version.

Assumes that this file is included from a Makefile that defines

JAVA_SRCS to be a list of Java source files to be compiled.

It may optionally define OTHER_CLASSES to contain names of classes

that aren’t derivable from the names of the JAVA_SRCS files.

The including Makefile may subsequently override JFLAGS (flags to

the Java compiler), and JAVAC (the Java compiler’s name), by putting

these definitions after the "include".

Targets defined:

default:Default entry. Compiles classes from all source files.

clean:: Remove back-up files and files that make can reconstruct.

You can add additional clean-up actions by adding more

’clean::’ targets (note the double colon) to your makefile.

check: Look in the subdirectory tests for all files whose name ends

in ’.sh’. Each of these should be an executable shell script

(a file of commands such as you could enter at the command

prompt) that performs some test of the program. Run each

and report all that fail (return a non-zero exit code).

#

JAVAC = javac

JFLAGS = -g

CLASSES = $(JAVA_SRCS:.java=.class) $(OTHER_CLASSES)

.PHONY: clean check default

Default entry

default: $(CLASSES)

$(CLASSES): $(JAVA_SRCS)

$(JAVAC) $(JFLAGS) $(JAVA_SRCS)

clean::

/bin/rm -f $(CLASSES) *~

check: $(CLASSES)

cd tests; for test in *.sh; do \

if ./$${test}; then \

echo "$${tests}: OK."; \

else \

echo "$${tests}: FAILED."; \

fi; \

done

Figure 2.2: An example of a file of standard makefile definitions that can be included
from a specific makefile to compile many simple collections of Java programs.

Chapter 3

The GJDB Debugger

A debugger is a program that runs other programs, allowing its user to exercise
some degree of control over these programs, and to examine them when things
go amiss. Sun Microsystems, Inc. distributes a text-based debugger, called JDB,
with its Java Developer’s Kit (JDK). I have modified JDB to make its commands
look pretty much like GDB, the GNU Debugger1, which handles C, C++, Pascal,
Ada, and a number of other languages. The result is called GJDB (g’jay dee bee).
Perhaps the most convenient way to use it is through the interface supplied with
Emacs.

GJDB is dauntingly chock-full of useful stuff, but for our purposes, a small set
of its features will suffice. This document describes them.

3.1 Basic functions of a debugger

When you are executing a program containing errors that manifest themselves dur-
ing execution, there are several things you might want to do or know.

• What statement or expression was the program executing at the time of a
fatal error?

• If a fatal error occurs while executing a function, what line of the program
contains the call to that function?

• What are the values of program variables (including parameters) at a partic-
ular point during execution of the program?

• What is the result of evaluating a particular expression at some point in the
program?

• What is the sequence of statements actually executed in a program?

• When does the value of a particular variable change?

1The recursive acronym GNU means “GNU’s Not Unix” and refers to a larger project to provide
free software tools.

37

38 CHAPTER 3. THE GJDB DEBUGGER

These functions require that the user of a debugger be able to examine program
data, to obtain a traceback (a list of function calls that are currently executing
sorted by who called whom), to set breakpoints where execution of the program is
suspended to allow its data to be examined, and to step through the statements of
a program to see what actually happens. GJDB provides all these functions. It is
a symbolic or source-level debugger, creating the fiction that you are executing the
Java statements in your source program rather than the machine code they have
actually been translated into.

3.2 Preparation

In this course, we use a system that compiles (translates) Java programs into exe-
cutable files containing bytecode, a sort of machine language for an idealized virtual
machine that is considerably easier to execute than the original source text. This
translation process generally loses information about the original Java statements
that were translated. A single Java statement usually translates to several ma-
chine statements, and most local variable names are simply eliminated. Information
about actual variable names and about the original Java statements in your source
program is unnecessary for simply executing your program. Therefore, for a source-
level debugger to work properly, the compiler must retain some of this superfluous
information (superfluous, that is, for execution).

To indicate to our compiler (javac) that you intend to debug your program, and
therefore need this extra information, add the -g switch during both compilation.
For example, if you are compiling an application whose main class is called Main,
you might compile with

javac -g Main.java

This sample command sequence produces a class file Main.class containing the
translation of the class Main, and possibly some other class files.

3.3 Starting GJDB

To run this under control of gjdb, you can type

gjdb Main

in a shell. You will be rewarded with the initial command prompt:

[-]

This provides an effective, but unfrilly text interface to the debugger. I don’t
actually recommend that you do this; it’s much better to use the Emacs facilities
described below. However, the text interface will do for describing the commands.

3.4. THREADS AND FRAMES 39

3.4 Threads and Frames

When GJDB starts, your program has not started; it won’t until you tell GJDB
to run it (you tell the program is not started from GJDB’s prompt, which will
be [-]). After the program has started and before it exits, GJDB will see a set of
threads, each one of which is essentially a semi-independent program. If you haven’t
encountered Java threads before, the part of your program that you usually think
of as “the program” will be the main thread, appropriately named main. However,
there will also be a bunch of system threads (running various support activities),
that GJDB will tell you about if asked, but which will generally not be of interest.
GJDB can examine one thread at a time; which one being indicated by the prompt:

[-] Means there are no threads; the program has not been started.

[?] Means the program is started, but GJDB is not looking at any particular thread.
You’ll often see this if you interrupt your program.

name[n] Means that GJDB is looking at thread name, and at frame #n (see below)
within that thread.

At any given time, a particular thread is in the process of executing some state-
ment inside a function (method)2. To arrive inside that method, the program had
to execute a method call in a statement of some other method (or possibly the
same, in the case of recursion), and so on back to the mysterious system magic that
started it all. In other words, in each thread, there is a sequence of currently active
method calls, each of which is executing a particular statement, and each of which
also has a bunch of other associated information: parameter values, local variable
values and so forth. We refer to each of these active calls as frames, or sometimes
stack frames, because they come and go in last-in-first-out order, like a stack data
structure. Each has a current location, which is a statement or piece of a statement
that is currently being executed in that call (sometimes called a program counter
or, confusingly, PC). The most recent, or top frame is the one that is executing
“the next statement in the program,” while each of the other frames is executing a
(so-far incomplete) method call.

For example, consider the simple class Example on page 40. Suppose we start
the program with command-line argument 5, and are stopped at statement (E).
Then (for the main thread) GJDB sees frames #0–#5, as follows:

Frame# Method Location Variables

0. report (E) x: 2

1. ilog (C) x: 1, a: 2

2. ilog (D) x: 2, a: 1

3. ilog (D) x: 5, a: 0

4. process (B) x: "5"

5. main (A) args: { "5" }
2Even when your program is initializing a field in a record, which doesn’t look as if it’s inside

a method, it is actually executing a part of either a constructor or a special “static initializer”
method (which you’ll see in certain listings under the name <clinit>).

40 CHAPTER 3. THE GJDB DEBUGGER

class Example {

public static void main (String[] args) {

for (int i = 0; i < args.length; i += 1)

process (args[i]); // (A)

}

void process (String x) {

ilog (Integer.parseInt(x), 0); // (B)

}

void ilog (int x, int a) {

if (x <= 1)

report (a); // (C)

else

ilog (x/2, a+1); // (D)

}

int report (int x) {

System.out.println (x); // (E)

}

}

3.5 GJDB Commands

Whenever the command prompt appears, you have available the following com-
mands. Actually, you can abbreviate most of them with a sufficiently long prefix.
For example, p is short for print, and b is short for break.

help command
Provide a brief description of a GJDB command or topic. Plain help lists the
possible topics.

run command-line-arguments
Starts your program as if you had typed

java Main command-line-arguments

to a Unix shell. GJDB remembers the arguments you pass, and plain run

thereafter will restart your program from the top with those arguments. By
default, the standard input to your program will come from the terminal
(which causes some conflict with entering debugging commands: see below).
However, you may take the standard input from an arbitrary file by using input
redirection: adding < filename to the end of the command-line-arguments uses
the contents of the named file as the standard input (as it does for the shell).
Likewise, adding > filename causes the standard output from your program
to go to the named file rather than to the terminal, and >& filename causes

3.5. GJDB COMMANDS 41

both the standard output and the standard error output to go to the named
file.

where

Produce a backtrace—the chain of function calls that brought the program to
its current place. The commands bt and backtrace are synonyms.

up

Move the current frame that GJDB is examining to the caller of that frame.
Very often, your program will blow up in a library function—one for which
there is no source code available, such as one of the I/O routines. You will
need to do several ups to get to the last point in your program that was
actually executing. Emacs (see below) provides the shorthand C-c< (Control-
C followed by less-than), or the function key f3.

up n Perform n up commands (n a positive number).

down

Undoes the effect of one up. Emacs provides the shorthands C-c> and function
key f4.

down n Perform n down commands (n a positive number).

frame n Perform ups or downss as needed to make frame #n the current frame.

thread n Make thread #n (as reported by info threads, below) the current
thread that GJDB is examining.

print E
prints the value of E in the current frame in the program, where E is a Java
expression (often just a variable). For example

main[0] print A[i]

A[i] = -14

main[0] print A[i]+x

A[i]+Main.x = 17

This tells us that the value of A[i] in the current frame is -14 and that when
this value is added to Main.x, it gives 17. Printing a reference value is less
informative:

main[0] p args

args = instance of java.lang.String[3] (id=172)

This tells you that args contains a pointer to a 3-element array of strings, but
not what these strings are.

print/n E also prints the value of expression E in the current frame. If E is
a reference value, however, it also prints the subcomponents (fields or array

42 CHAPTER 3. THE GJDB DEBUGGER

elements) of the referenced object to n levels. Plain print without this speci-
fication is equivalent to print/0, and does not print subcomponents. Printing
subcomponents to one level means printing each subcomponent of E’s value as
if by print/0. Printing to two levels prints means printing each subcomponent
as if by print/1, and so forth recursively. For example,

main[0] print/1 args

args = instance of java.lang.String[3] (id=172) {

"A", "B", "C"

}

main[0] p T

T = instance of Tree(id=176)

main[0] p/1 T

T = instance of Tree(id=176) {

label: "A"

left: null

right: instance of Tree(id=178)

}

main[0] p/2 T

T = instance of Tree(id=176) {

label: "A"

left: null

right: instance of Tree(id=178) {

label: "B"

left: null

right: instance of Tree(id=180)

}

}

dump E
Equivalent to print/1 E.

dump/n E
Equivalent to print/n E.

info locals Print the values of all parameters and local variables in the current
frame.

info threads List all current threads.

quit
Leave GJDB.

The commands to this point give you enough to pinpoint where your program blows
up, and usually to find the offending bad pointer or array index that is the immediate
cause of the problem (of course, the actual error probably occurred much earlier in
the program; that’s why debugging is not completely automatic.) Personally, I
usually don’t need more than this; once I know where my program goes wrong, I

3.5. GJDB COMMANDS 43

often have enough clues to narrow down my search for the error. You should at least
establish the place of a catastrophic error before seeking someone else’s assistance.

The next bunch of commands allow you to actively stop a program during normal
operation.

suspend and C-f

When a program is run from a Unix shell, C-c will terminate its execution
(usually). At the moment, unfortunately, it will also do this to GJDB it-
self. When debugging, you usually want instead to simply stop the debugged
program temporarily in order to examine it. When the standard input is
redirected from a file (using ‘<’; see the run command), you can simply use
suspend to stop the program (and then use continue or resume to restart).
When the program is running and standard input comes from the terminal,
things get complicated: how does GJDB know a command from program in-
put. If you are using GJDB mode (see §3.7), then C-c C-c will do the trick in
this case. Otherwise, if you are running in an ordinary shell, use C-f following
by return. And finally, if you are running in a shell under Emacs, use C-qC-f

followed by return.

break place
Establishes a breakpoint; the program will halt when it gets there. The easiest
breakpoints to set are at the beginnings of functions, as in

[-] break Example.process

Set breakpoint request Example:8

(using the class Example from §3.4). Use the full method name (complete with
class and package qualification), as shown. You will either get a confirming
message as above (saying that the system set a breakpoint at line 8 of the file
containing class Example), or something like

Deferring BP RatioCalc.main [unresolved].

It will be set after the class is loaded.

when you set a breakpoint before the class in question has been loaded. Break-
points in anonymous classes are a bit tricky; their names generally have the
form “C$n” where C is the name of the outermost class enclosing them, and
n is some integer. The problem is that you don’t generally know the value of
n. GJDB therefore allows “C.0” as a class name, meaning “any anonymous
class inside C.”

When you run your program and it hits a breakpoint, you’ll get a message
and prompt like this.

Breakpoint hit: thread="main", Example.main(), line=4, bci=22

main[0]

(Here, “bci” indicates a position within the bytecode translation of the method;
it is not generally very useful). Emacs allows you to set breakpoints with the
mouse (see §3.7).

44 CHAPTER 3. THE GJDB DEBUGGER

condition N cond Make breakpoint number N conditional, so that the program
only stops if cond, which must be a boolean expression, evaluates to true.

condition N Make breakpoint number N unconditional.

delete

Removes breakpoints. This form of the command gives you a choice of break-
points to delete, and is generally most convenient.

cont or continue
Continues regular execution of the program from a breakpoint or other stop.

step

Executes the current line of the program and stops on the next statement to
be executed.

next

Like step, however if the current line of the program contains a function call
(so that step would stop at the beginning of that function), does not stop in
that function.

finish

Does nexts, without stopping, until the current method (frame) exits.

3.6 Common Problems

Name unknown. When you see responses like this:

main[0] print x

Name unknown: x

main[0] print f(3)

Name unknown: f

check to see if the variable or method in question is static. A current limitation of
the debugger is that you must fully qualify such names with the class that defines
them, as in

main[0] print Example.f(3)

Beware also that fully qualified names include the package name.

Ignoring breakpoints. For a variety of reasons, it is possible for a program
to miss a breakpoint that you thought you had set. Unfortunately, GJDB is not
terribly good at the moment at catching certain errors. In particular, it will tell
you that a breakpoint has been deferred, when in fact it will never be hit due to a
class name being misspelled.

3.7. GJDB USE IN EMACS 45

3.7 GJDB use in Emacs

While one can use gjdb from a shell, nobody in his right mind would want to do so.
Emacs provides a much better interface that saves an enormous amount of typing,
mouse-moving, and general confusion. Executing the Emacs command M-x gjdb

starts up a new window running gjdb, and enables a number of Emacs shortcuts, as
well as providing a Debug menu for issuing many GJDB commands. This command
prompts for a command string (typically gjdb classname) and (for certain historical
reasons) creates a buffer named *gud-classname*. Emacs intercepts output from
gjdb and interprets it for you. When you stop at a breakpoint, Emacs will take
the file and line number reported by gjdb, and display the file contents, with the
point of the breakpoint (or error) marked. As you step through a program, likewise,
Emacs will follow your progress in the source file. Other commands allow you to
set or delete breakpoints at positions indicated by the mouse.

The following table describes the available commands. On the left, you’ll find
the text command line, as described in §3.5. Next comes the Debug menu button
(if any) that invokes the command. This menu applies both to the GJDB buffer and
to buffers containing .java files. Next come the Emacs shortcuts: sequences of keys
that run the commands. The shortcuts are slightly different in the GJDB buffer
as opposed to buffers containing source (.java) files, so there are two columns of
shortcuts. The last column contains further description. Finally, here are a few
reminders about Emacs terminology:

1. In shortcuts, C-x means “control-x,” S-x means “shift-x,” fn refers to one
of the function keys (typically above the keyboard), and SPC is the space
character.

2. The point, in Emacs, refers to the location of the cursor; there is one for each
buffer. You can set the point using the usual motion commands when in the
buffer, or by simply clicking the mouse at the desired spot.

3. The region in any given buffer is a section of text (usually shadowed or high-
lighted so that you can tell where it is). One convenient way to set it is by
dragging the mouse over the text you want included while holding down the
left mouse button.

46 CHAPTER 3. THE GJDB DEBUGGER

Table 3.1: Summary of Commands for Program Control

Emacs

Command Line Menu
GJDB
buffer

.java

buffer Description

next Step Over f6 or
C-c

C-n

f6 Execute to the next statement of the
program; if this statement contains
function calls, execute them com-
pletely before stopping. [See Note 3,
below]

step Step Into f5, or
C-c C-s

f5 Execute to the next statement of the
program; if this statement calls a
function, stop at its first line. [See
Note 3, below]

finish Finish Function f7 or
C-c C-f

f7 Execute until the current function call
returns.

continue Continue f8 or
C-c C-r

f8 Continue execution of stopped pro-
gram.

suspend Interrupt C-c C-c Interrupt execution of program and
suspend its threads.

C-f Interrupt C-c C-c Same as suspend, but works in cases
where the debugged program is run-
ning and GJDB is passing input to it
from the terminal.

break file:line# Set Breakpoint C-x SPC Set a breakpoint at the point (applies
only to the source buffer).

delete file:line# Clear Breakpoint Remove a breakpoint at the point
(applies only to the source buffer).

run Run (Re)start the program, using the last
set of command-line arguments. Only
available in the GJDB buffer.

quit Quit Leave GJDB. Only available in the
GJDB buffer.

- Refresh Re-arrange Emacs’ windows as
needed to display the current source
line that GJDB is looking at.

- Start Debugger Run gjdb on the class in this (source)
buffer.

3.7. GJDB USE IN EMACS 47

Table 3.2: Summary of Commands for Examining a Program

Emacs

Command Line Menu
GJDB
buffer

.java

buffer Description

print expr Print f9 f9 Evaluate expr and print, without
showing any subcomponents of the
value. Emacs commands apply either
to the contents of the region, or if it
is inactive, to the variable, field selec-
tion, or function call at or after the
point.

dump expr Print Details S-f9 S-f9 Evaluate expr and print, also print-
ing any components (array elements
or fields). With Emacs, gets the ex-
pression to print as for print.

info locals Print (as for the print command) the
values of all local variables in the cur-
rent frame.

up View Caller f3 or
C-c <

f3 Move the debugger’s current focus of
attention up one frame; if looking at
frame n at the moment, we switch to
frame n − 1.

down View Callee f4 or
C-c >

f4 Move the debugger’s current focus
of attention down one frame (from
frame n to frame n + 1). Opposite
of up.

where Print a backtrace, showing all active
subprogram calls.

info threads List all threads in the program.
thread N Make thread #N be the one that

GJDB is currently examining.

	Highlights of GNU Emacs
	Basic Concepts
	Important special-purpose commands
	Basic Editing
	Simple text.
	Navigation within a buffer.
	Context searches.
	Deletion, insertion, and text movement
	Using the mouse
	Replacement
	Modes

	Files, buffers, and windows
	On-line documentation
	The info browser

	The shell
	Compiling, debugging, and tags
	Compilation
	Using GDB and GJDB under Emacs
	Tags

	But wait; there's more!

	Basic Compilation: javac and gmake
	Compilation and Interpretation
	Where `java' and `javac' find classes
	The interpreter's classes
	The compiler's classes

	Multiple classes in one source file
	Compiling multiple files
	Archive files
	The make utility
	Basic Operation and Syntax
	Variables
	Phony targets
	Details of actions
	Including makefiles

	The GJDB Debugger
	Basic functions of a debugger
	Preparation
	Starting GJDB
	Threads and Frames
	GJDB Commands
	Common Problems
	GJDB use in Emacs

