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Introduction

Welcome to CS 61B. The CS 61 series is an introduction to computer science, with particular
emphasis on software and on machines from a programmer’s point of view. CS 61A covered
high-level approaches to problem-solving, providing you with a variety of ways to organize
solutions to programming problems: as compositions of functions, collections of objects, or
sets of rules. In CS 61B, we move to a somewhat more detailed (and to some extent, more
basic) level of programming. As in 61A, the correctness of a program is important. In CS 61B,
we’re concerned also with engineering. An engineer, it is said, is someone who can do for a
dime what any fool can do for a dollar. Much of 61B will be concerned with the tradeoffs
in time and memory for a variety of methods for structuring data. We’ll also be concerned
with the engineering knowledge and skills needed to build and maintain moderately large
programs.

Discussion and Lab Sections

As of this writing, the teaching assistants this semester are Paul Hale, Nam Mai, Ryan
Waliany, and Leonard Wei. We will maintain contact information about them on the web page.
There will also be readers grading things other than tests, and volunteer lab assistants staffing
the lab sections (at least, we sure hope so).

I really don’t care what discussion and lab section you choose to be in, but please make
sure you do have them and that their TAs know about you. If you want to change sections,
just clear it with the TAs involved. Please don’t even think about informing TeleBEARS
(or me) if you change sections; it can only cause trouble, and it makes no difference for my
records.

∗With contributions by Brian Harvey, Mike Clancy, Katherine Yelick, and John Canny.
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On-line Resources

The course home page will provide one-stop shopping for course information. All the hand-
outs, homeworks, labs, staff contact information, etc., will be posted there. The home page
is http://www-inst.eecs.berkeley.edu/~cs61b.

Please do not print out on-line information that we hand out in class or that is available
through the indicated copy stores. It is a waste of paper and ties up the lab printers. I will
try to keep extra paper handouts available if you need them.

The course newsgroup is ucb.class.cs61b. For most questions about the course, the
newsgroup is the right place to ask them. The course staff read it regularly, so you will get
a quick answer. That way, other students benefit by seeing the question and the answer.
Don’t forget to check the newsgroup before asking your question, just in case someone else
has posted it.

The e-mail address cs61b@cs will send a message to the entire staff. You can use it for
correspondence that you don’t want to send to the newsgroup. Again, all the staff read it, so
you will usually get a quick reply. If you send a question that is of general interest, we may
post the response on the newsgroup (we will keep personal information out of it, of course).
To talk with us, the best way is to come during regular office hours (posted on our doors as
well as in the home page). Many of us are available at other times by appointment. Please
don’t be shy; web pages, e-mail, and news are useful, but its still much easier to understand
something when you can talk about it face-to-face.

When logged into our instructional systems for CS61B work, please make sure that you
are using the standard configuration for the class—that is, the files .cshrc, .login, .emacs,
etc., that should have been in your accounts initially. If you must modify these, we suggest
that you continue to have them read our scripts from the ~cs61b/adm directory, so that we
can easily propagate corrections to you. In any case, if you modify these files, you are on your
own.

This semester, we will be using the latest release of Java (J2SE 5.0), available in down-
loadable for Windows, Linux, and MacOS X. To obtain a version of the system for home
use, go to the class web page, where you will find a link to Sun’s download page. Under
the circumstances, you may find it more convenient to simply use the instructional machines
remotely by logging in from home. We should have information on this posted as well. The
modified version of Sun’s debugger that we use—called gjdb—is only likely to work on Sun’s
JDK; in particular, don’t expect it to work at all on a non-Sun Java implementation. You
will need to download some .class files from us. Details will appear on the class home page.

Background Knowledge

Some of you may have thought that the stuff you learned in CS 61A was mere esoteric fluff
inexplicably thrown at you to weed out the faint of heart. Not true. In fact, although the
syntaxes of Java and Scheme are enormously different, the underlying computational models
are surprisingly similar. You will find that almost all the “big ideas” you see in Java had
their analogues in what you learned in CS 61A (indeed, one self-test of your understanding of

http://www-inst.eecs.berkeley.edu/~cs61b


CS 61B General Course Information 3

the course material in CS 61B is to check that you see all the similarities). This course will
assume you are familiar with CS 61A, and there will be some references to the 61A textbook
(Abelson, Sussman, and Sussman). If you haven’t taken 61A, you may be confused sometimes,
and you should make sure you review a copy of Abelson, Sussman, and Sussman early on
in the semester. We will also make available on-line documentation of the object-oriented
extension to Scheme that was used in CS 61A.

All the instructional machines for this course will be running various flavors of the Unix
operating system, and it’s essential that you become familiar with it. There will be on-line
information available from the class home page. Another good introduction is “A Practical
Guide to The Unix System (3rd edition)” by Mark Sobell (Addison-Wesley, 1994) available at
bookstores on- and off-line. Over the course of the semester, there are help sessions on various
useful computer-related topics; we will put appropriate links on the course home page.

Is this the right course?

This is a course about data structures and programming methods. It happens to also teach
Java and a bit of C, since it is hard to teach programming without a language. However,
it is not intended as an exhaustive course on Java, the World-Wide Web, creating applets,
user interfaces, graphics, or any of that fun stuff. Some of you may have already had a data
structures course, and simply want to learn Java or C++. For you, a much better choice would
be self-study, or (for C++) CS 9F “C++ for programmers,” a one-unit self-paced course that
will teach you more of what you want to know in less time. There is no enrollment limit for
that course, and you work through it at your own pace after the first and only lecture. There
is a similar course for Java (CS 9G). Finally, a new 1-unit self-paced course, CS 47B, is for
students “with sufficient partial credit in 61B,” allowing them (with instructor’s permission)
to complete the 61B course requirement without taking the full course.

Course Materials

There are two regular textbooks for this course: Head First Java, 2nd Edition by Sierra and
Bates (O’Reilly, 2005), and Pragmatic Unit Testing in Java with JUnit by Hunt and Thomas
(The Pragmatic Bookshelf, 2004). A bit later, we announce the availability of additional
readers at a local copy store. The readers contain reference material on the Java program-
ming language, documentation to assist in lab exercises and projects, and material on data
structures. We will keep electronic copies of the first two readers and of all other handouts
available through links from the course home page.

The Java text is not a reference book (it says so on page xxii). If you intend to become a
serious programmer, you will probably want a reference at some point. The official description
of the Java core language is The JavaTM Language Specification, Third Edition by James
Gosling, Bill Joy, Guy Steele, and Gilad Bracha (Addison-Wesley Professional, 2005). This
book does not contain a reference for the library. The paper library references I’ve seen are
less than satisfactory (and quite expensive). I’m inclined for now to stick with the on-line
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documentation (there’s a link to it on the class home page, and the Eclipse programming
environment can also reference it for you).

Laboratory and Discussion Sections

There will be one lab section and one discussion section per week. We have scheduled lab
sections between the Monday and Wednesday lectures, and discussion sections between the
Wednesday and Friday lectures. You should expect that new material may be presented
during the scheduled labs. Actually, you can do the projects and lab exercises any time, but
we can only guarantee organized assistance during the scheduled lab sections in Soda. You
should plan on attending the discussion sections. Tests will be returned in section.

Labs will be presented on line, so that you can browse through them step by step. Un-
fortunately, the Eclipse programming environment, which many of you will probably want to
use, is not suitable for remote use. If you have a computer at home, and want to work from
there, you will either want to install Eclipse on your home machine (versions run on MacOS
X, Linux, and Windows), or use Emacs remotely from home via ssh (you can use Emacs at
home as well, for that matter). While Emacs currently doesn’t give you all the nice features
that Eclipse does, it works reasonably well remotely, and has a reasonable Java debugging
interface. Emacs can work on the same Java source files that Eclipse does (although when
you return to Eclipse after having changed the source files outside of Eclipse, you will need
to “clean” your project before running or debugging from Eclipse.) If you work at home, you
will occasionally need to ship your files to the instructional machines or back. I recommend
that if possible, you use the ‘rsync’ program for this purpose (it can ship whole directories,
and copies just those files that have changed).

Computer Accounts

The CS 61B scheduled labs will all be held in 275 Soda, which contains Intel workstations
running Solaris. At other times, you can use any computer that is not being used for another
scheduled lab. Lab times are normally posted outside each computer room. You will receive
a computer account form in lab the first week. Extra forms will be available in 385 Soda after
that. Information on computer facilities and computing from home should be available via
the class Web page.

You must electronically register the account you intend to use for handing in assignments
(only one account, please) during the first week (by Friday’s lecture). If you use one of the
class accounts we hand out (logins starting with cs61b), you will be asked the standard
registration questions when you log in. From other (named) accounts, use the command

~cs61b/bin/register

and follow any instructions it gives you.
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Homework and Programming Assignments

There will be many lab activities that record some of your work, more ordinary homework
for you to do outside the lab, some of which includes small programming problems, and three
larger-scale programming projects. You will turn in everything electronically. Be sure you
have an account (registered for CS61B) for that purpose.

Testing and Grading

In addition to homework, there will be at least one test during the term, and a final. All
tests are open book, open notes, and may cover any material whatever (however, to prevent
out-and-out mutiny, I am generally reasonable in the material selected).

The programming projects will count for a total of 90 points, and written homeworks and
labs for 20 points. The final will be worth 50 points and other tests will count for a total of
40 points. Your letter grade will be determined by total points out of the possible 200:

185 170 160 150 140 130 120 110 100 90 80 75 < 75

A+ A A- B+ B B- C+ C C- D+ D D- F

In other words, there is no curve; your grade will depend only on how well you do, and not
on how well everyone else does. For your information, University guidelines suggest that the
average GPA for a lower-division required course be in the range 2.5–2.9, with 2.7 (B-) being
typical. This corresponds to getting 50% on tests (typical for my courses), 75% on projects,
and 100% on homeworks (on which you get full credit simply for turning something in that
displays reasonable effort on all questions).

If you believe we have misgraded an exam, return it to your TA with a note explaining
your complaint. We will regrade the entire test. You should check the on-line solutions first
to make sure that this regrade will make your total score go up.

I will grant grades of Incomplete only for dire medical or personal emergencies that cause
you to miss the final, and only if your work up to that point has been satisfactory. Do not

try to get an incomplete simply as a way to have more time to study or do a project; that is
contrary to University policy.

Inevitably, some of you will have conflicts with the scheduled exam times. I will arrange
for alternative test times for those people who have sufficient cause. Sufficient cause includes
exams scheduled at an overlapping time in another course, medical or family emergencies, or
important religious holidays (however, I believe I have avoided all of those). Popular reasons
that are not sufficient cause include having job interviews, having a plane ticket that you (or
your parents) bought without consulting the schedule, having exams or assignments in other
courses at nearby times, being behind in your reading, being tired, or being hungover. With
the obvious exception of emergencies, you must arrange alternative exam times with me well
in advance.
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Policy on Collaboration and Cheating

I strongly encourage you to help each other on homework assignments. Ordinary homework
is not seriously graded: you get points for handing in something. Naturally, though, it is in
your best interest not to take advantage of this fact, and to treat homework seriously.

The three projects are individual efforts in this class (no partnerships). Feel free to discuss
projects or pieces of them before doing the work. But you must complete and write up each
project yourself. That is, feel free to discuss projects with each other, but be aware that we
expect your work to be substantially different from that of all your classmates (in this or any
other semester).

Copying and presenting another person’s project or test work as your own constitutes
cheating. Electronically submitted programs are particularly easy to check for copying or
trivial changes, and we will be doing that. I will report any incident of cheating to my
departmental chairman and to Student Judicial Affairs.

I realize that CS and EE programs at Berkeley are very intense, and that students are
often under extraordinary pressure to make deadlines. But deadlines are a fact of life, and
will persist after college. The trick is to get ahead of them. You can seek advice from the
staff early if you feel yourself getting behind in something. Knowing where and how to get
advice on things you don’t understand is a skill everyone needs to succeed in the real world.
Finally, those of you who are EECS freshmen and sophomores should realize that even a poor
grade in one introductory class will have little effect on your final GPA; for you, there’s even
less to gain from yielding to temptation.

Lateness

We will give no credit for written homework turned in after the deadline. Please do not beg
and plead for exceptions; an individual assignment is worth too few points to justify your
groveling at the my feet (a comment that probably applies to individual test questions, as
well). You can miss an assignment or two and still get your A+.

On programming projects, we are a tad more lenient. I’ll penalize an assignment 5N/12
percent for each N hours it is late, rounded off in some unspecified fashion. During the course
of the semester, however, we’ll give you a total of three late days (72 hours) for free.

Lecture Recording

The lectures will be recorded and available for replay over the Web. Details and links are on
the class home page.


