
Assorted Materials on Java

Paul N. Hilfinger
University of California, Berkeley

Copyright c© 2001, 2002, 2004, 2006 by Paul N. Hilfinger. All rights reserved.

Acknowledgments. Thanks to Soheil Golshan for pointing out errors in an ear-
lier edition of these notes.

Contents

1 Describing a Programming Language 5

1.1 Dynamic and Static Properties . 5

1.2 Describing Lexical Structure and Syntax 7

2 Values, Types, and Containers 9

2.1 Values and Containers . 10

2.1.1 Containers and Names . 10

2.1.2 Pointers . 10
2.2 Types . 12

2.2.1 Static vs. dynamic types . 13

2.2.2 Type denotations in Java . 14

2.3 Environments . 15
2.4 Applying the model to Java . 15

3 Numbers 17

3.1 Integers and Characters . 17

3.1.1 Integral values and their literals 17

3.1.2 Modular integer arithmetic 20

3.1.3 Manipulating bits . 24
3.2 Floating-Point Numbers . 27

3.2.1 Floating-Point Literals . 28

3.2.2 Floating-point arithmetic . 29

4 Strings, Streams, and Patterns 35

4.1 Bytes and Characters . 36

4.1.1 ASCII and Unicode . 36

4.1.2 The class Character . 39
4.2 Strings . 39

4.2.1 Constructing Strings . 40

4.2.2 Aside: Variable-Length Parameter Lists 45

4.2.3 String Accessors . 47
4.2.4 String Comparisons, Tests, and Searches 48

4.2.5 String Hashing . 49

4.3 StringBuilders . 49

4.4 Readers, Writers, Streams, and Files 50

3

4 CONTENTS

4.4.1 Input . 53
4.4.2 Readers and InputStreams 55
4.4.3 Output . 56
4.4.4 PrintStreams and PrintWriters 57

4.5 Regular Expressions and the Pattern Class 57
4.6 Scanner . 62

5 Generic Programming 65

5.1 Simple Type Parameters . 66
5.2 Type Parameters on Methods . 68
5.3 Restricting Type Parameters . 69
5.4 Wildcards . 70
5.5 Generic Programming and Primitive Types 70
5.6 Caveats . 72

6 Multiple Threads of Control 75

6.1 Creating and Starting Threads . 78
6.2 A question of terminology . 79
6.3 Synchronization . 81

6.3.1 Mutual exclusion . 82
6.3.2 Wait and notify . 84
6.3.3 Volatile storage . 86

6.4 Interrupts . 87

Index 91

Chapter 1

Describing a Programming

Language

A programming language is a notation for describing computations or processes. The
term “language” here is technically correct, but a little misleading. A programming
language is enormously simpler than any human (or natural) language, for the
simple reason that for it to be useful, somebody has to write a program that converts
programs written in that language into something that runs on a computer. The
more complex the language, the harder this task. So, programming “languages”
are sufficiently simple that, in contrast to English, one can actually write down
complete and precise descriptions of them (at least in principle).

1.1 Dynamic and Static Properties

Over the years, we’ve developed standard ways to describe programming languages,
using a combination of formal notations for some parts and semi-formal prose de-
scriptions for other parts. A typical language description consists of a core—the
general rules that determine what the legal (or well-formed) programs are and what
they do—plus libraries of definitions for standard, useful program components. The
description of the core, in turn, typically divides into static and dynamic properties.

Static properties. In computer science, we use the term static in several senses.
A static language property is purely a property of the text of a program, independent
of any particular set of data that might be input to that program. Together, the
static properties determine which programs are well-formed; we only bother to define
the effects of well-formed programs. Traditionally, we divide static properties into
lexical structure, (context-free) syntax, and static semantics.

• Lexical Structure refers to the alphabet from which a program may be formed
and to the smallest “words” that it is convenient to define (which are called
tokens, terminals, or lexemes.) I put “word” in quotes because tokens can
be far more varied than what we usually call words. Thus, numerals, identi-
fiers, punctuation marks, and quoted strings are usually identified as tokens.

5

6 CHAPTER 1. DESCRIBING A PROGRAMMING LANGUAGE

Rules about what comments look like, where spaces are needed, and what
significance ends of lines have are also considered lexical concerns.

• Context-free Syntax (or grammar) refers roughly to how tokens may be put
together, ignoring their meanings. We call a “sentence” such as “The a;
walk bird” syntactically incorrect or ungrammatical. On the other hand,
the sentence “Colorless green ideas sleep furiously” is grammatical, although
meaningless1.

• Static Semantics refers to other rules that determine the meaningfulness of a
program (“semantics” means “meaning”). For example, the rule in Java that
all identifiers used in a program must have a definition is a static semantic
rule.

The boundaries between these three may seem unclear, and with good reason: they
are rather arbitrary. We distinguish them simply because there happen to be con-
venient notations for describing lexical structure and context-free syntax. There is
considerable overlap between the categories, and sometimes it is a matter of taste
which notation one uses for a particular part of a programming language’s descrip-
tion.

Dynamic Properties. The dynamic semantics of a program refers to its meaning
as a computation—what it does when it is executed (assuming, of course, that the
rules governing static properties of the programming language tell us that it is well-
formed). For example, the fact that x+y fetches the current values of variables
x and y and yields their sum is part of the dynamic semantics of that expression.
In general, the term dynamic in the context of programming languages refers to
properties that change (or are only determined) during the execution of a program.
For example, the fact that the expression x>y yields a boolean (true/false) value is
a static property of the expression, while the actual value of the expression during
a particular evaluation is a dynamic property. As usual, the boundaries between
static and dynamic can be unclear. For example, the evaluation of 3>4 follows
the same rules for ‘>’ as does the evaluation of x>y, but its value is always the
same (false). Should we call the value of 3>4 a static or dynamic property? We’ll
generally follow the sensible course of simply ignoring such questions.

Libraries. In one sense, a program consists of a set of definitions, all building on
one another, one of which may be identified as the “main program.” There have to
be some primitive definitions with which to start. The core defines some of these
primitive definitions, and others come from libraries of definitions. Typically, there
will be set of libraries—referred to as the standard (runtime) library or sometimes
as the standard prologue—that “comes with” the programming language, and is
present in every implementation. One could consider it part of the core, except
that it is typically described as a set of declarations of the sort that any program
could contain.

1This sentence is a famous example due to Noam Chomsky.

1.2. DESCRIBING LEXICAL STRUCTURE AND SYNTAX 7

1.2 Describing Lexical Structure and Syntax

The original description of the Algol 60 language2 is the model on which many other
“official” descriptions of programming languages have been based. It introduced a
novel notation (adapted, really, from linguistics) for describing the (context-free)
syntax of a language that came to be known as Backus-Naur Form or Backus Normal
Form after its inventors (the usual abbreviation, BNF, works for both)3. In this
book, we’ll use a somewhat extended version of BNF notation.

The basic idea is simple. A BNF description is a sequence of definitions of what
are called syntactic variables, or nonterminals. Each such variable stands for a set
of possible phrases. One distinguished variable (the start symbol) stands for the
set of all grammatical phrases in the language we are trying to describe. For
example4:

Sentence: NounPhrase VerbPhrase
NounPhrase: Adjective NounPhrase
NounPhrase: Adjective PluralNoun
VerbPhrase: PluralVerb Adverbopt
Adjective: laughing

Adjective: little

SingularNoun: boys

SingularNoun: girls

SingularVerb: ran

Adverb: quickly

Read the first definition, for example as “A Sentence may be formed from a Noun-
Phrase followed by a VerbPhrase.” We read ‘:’ as “may be” as opposed to “is,”
because as you can see, there can be several ways to form certain kinds of phrase.
The second definition illustrates recursion: a NounPhrase may be formed from an
Adjective followed by a (smaller) NounPhrase. The recursion stops when we use the
second definition of NounPhrase. The definition of VerbPhrase illustrates a useful
piece of notation: the subscript ‘opt’ to indicate an optional part of the definition.
Equivalently, we could have written

VerbPhrase: PluralVerb Adverb
VerbPhrase: PluralVerb

Each of the terms that does not appear to the left of a ‘:’ is a terminal symbol.
Our convention will be that non-italicized terminals “stand for themselves”—thus,
“laughing little boys ran” is a phrase generated by this grammar. As you can see,

2P. Nauer, ed., “Report on the Algorithmic Language Algol 60,” Comm ACM, 6(1), 1963, pp.
1–17.

3In notations where the same thing can be written in many different ways, a normal form for
some expression is supposed to be a particular choice among these different ways that is somehow
unique. For example, the expressions x− 3, x+(−3), −3+x, and 1 ·x− 5+2 all refer to the same
value for any x. A normal form might be “a · x + b, where a and b are constants.” There is only
one way to write the expression that way: 1 · x + (−3). BNF does not have this property, so of the
two names, I prefer Backus-Naur Form.

4This example is adapted from Hopcroft and Ullman, Formal Languages and Their Relation to

Automata, Addison-Wesley, 1969.

8 CHAPTER 1. DESCRIBING A PROGRAMMING LANGUAGE

we don’t mention lexical details such as blanks when giving grammar rules; we’ll
deal with those details separately.

There are several pieces of notational trickery we’ll use to shorten definitions
a bit. Multiple definitions of the same nonterminal may be collected together and
written either like this:

NounPhrase: Adjective NounPhrase | Adjective PluralNoun

(that is, read ‘|’ as “or”). With longer definitions, we’ll usually use the following
style:

NounPhrase:
Adjective NounPhrase
Adjective PluralNoun

The effect of our definition of NounPhrase is to define it to be a sequence of one
or more Adjectives followed by a PluralNoun. We’ll sometimes use a traditional
shorthand for this and write its definition as simply

NounPhrase: Adjective+ PluralNoun

The raised ‘+’ means “one or more.” Similarly, there is a related notation that
we might use to define another kind of NounPhrase in which the Adjectives are
optional:

SimpleNounPhrase: Adjective∗ PluralNoun

The asterisk here (called the Kleene star) means “zero or more.”
Two other common cases are the “list of one or more Xs separated by Y s”

and the “list of one or more Xs separated by Y s,” which one can write as in these
examples:

ExpressionList: Expression | ExpressionList , Expression
ParameterList: ExpressionListopt

Rather than defining new nonterminals, however, we’ll allow a shorthand that re-
places ExpressionList and ParameterList with

Expression+
,

Expression∗
,

respectively.

Continuing lines. Sometimes a definition gets too long for a line. Our convention
here is to indent continuation lines to indicate that they are not alternatives. For
example, this is one continued alternative, not two:

BasicClassDeclaration:
class SimpleName Extendsopt Implementsopt

{ ClassBodyDeclaration∗ }

Chapter 2

Values, Types, and Containers

A programming language is a notation for describing the manipulation of some set
of conceptual entities: numbers, strings, variables, and functions, among others.
A description of this set of entities—of what we call the semantic domain of the
language—is therefore central to the description of a programming language. To
experienced programmers, the notation itself—the syntax of the language—is largely
a convenient veneer; the semantic domain is what they are really talking about.
They think “behind the syntax” to the effects of their programs on the denizens
of the semantic domains, or as the Cornell computer scientist David Gries puts it,
they program into a programming language rather than in it.

To set the stage for what is to come, this chapter is devoted to developing a
model for Java’s semantic domain, one that is actually applicable to a large range
of programming languages. Our model consists of the following components:

Values are “what data are made of.” They include, among other things, integers,
characters, booleans (true and false), and pointers. Values, as I use the term,
are immutable; they never change.

Containers contain values and other containers. Their contents (or state) can
vary over time as a result of the execution of a program. Among other things,
I use the term to include what are elsewhere called objects. Containers may
be simple, meaning that they contain a single value, or structured, meaning
that they contain other containers, which are identified by names or indices.
A container is named if there is some label or identifier a program can use
to refer to it; otherwise it is anonymous. In Java, for example, local vari-
ables, parameters, and fields are named, while objects created by new are
anonymous.

Types are, in effect, tags that are stuck on values and containers like Post-ittm

notes. Every value has such a type, and in Java, so does every container.
Types on containers determine the types of values they may contain.

Environments are special containers used by the programming language for its
local and global named variables.

9

10 CHAPTER 2. VALUES, TYPES, AND CONTAINERS

2.1 Values and Containers

One of the first things you’ll find in an official specification of a programming lan-
guage is a description of the primitive values supported by that language. In Java,
for example, you’ll find seven kinds of number (types byte, char, short, int, long,
float, and double), true/false values (type boolean), and pointers. In C and
C++, you will also find functions (there are functions in Java, too, but the lan-
guage doesn’t treat them as it does other values), and in Scheme, you will find
rational numbers and symbols.

The common features of all values in our model are that they have types (see
§2.2) and they are immutable; that is, they are changeless quantities. We may
loosely speak of “changing the value of x” when we do an assignment such as
‘x = 42’ (or ‘(set! x 42)’) but under our model what really happens here is that
x denotes a container, and these assignments remove the previous value from the
container and deposit a new one. At first, this may seem to be a confusing, pedantic
distinction, but you should come to see its importance, especially when dealing with
pointers.

2.1.1 Containers and Names

A container is something that can contain values and other containers. Any con-
tainer may either be labeled (or named)—that is, have some kind of name or label
attached to it—or anonymous. A container may be simple or structured. A simple
container, represented in my diagrams as a plain rectangular box, contains a single
value. A structured container contains other containers, each with some kind of
label; it is represented in diagrams by nested boxes, with various abbreviations.
The full diagrammatic form of a structured container consists of a large container
box containing zero or more smaller containers1, each with a label or name, as in
Figure 2.1a. Figures 2.1b–e show various alternative depictions that I’ll also use.
The inner containers are known as components, elements (chiefly in arrays), fields,
or members.

An array is a kind of container in which the labels on the elements are them-
selves values in the programming language—typically integers or tuples of integers.
Figure 2.2 shows various alternative depictions of a sample array whose elements
are labeled by integers and whose elements contain numbers.

2.1.2 Pointers

A pointer (also known as a reference2) is a value that designates a container. When I
draw diagrams of data structures, I will use rectangular boxes to represent containers

1The case of a structured container with no containers inside it is a bit unusual, I admit, but it
does occur.

2For some reason, numerous Java enthusiasts are under the impression that there is some well-
defined distinction between “references” and “pointers” and actually attempt to write helpful expla-
nations for newcomers in which they assume that sentences like “Java has references, not pointers”
actually convey some useful meaning. They don’t. The terms are synonyms.

2.1. VALUES AND CONTAINERS 11

4N:

prev:

next:

(a)

4N:

prev:

next:

(b)

N: 4 prev: next:

(c)

4

(d)

4

(e)

Figure 2.1: A structured container, depicted in several different ways. Diagrams
(d) and (e) assume that the labels are known from context.

2.7

.18

2.8

0:

1:

2:

(a)

2.7

.18

2.8

0

1

2

(b)

2.7

.18

2.8

(c)

2.7 .18 2.8

0 1 2

(d)

2.7 .18 2.8

0 1 2

(e)

2.7 .18 2.8

(f)

Figure 2.2: Various depictions of one-dimensional array objects. The full diagram,
(a), is included for completeness; it is generally not used for arrays. The diagrams
without indices, (c) and (f), assume that the indices are known from context or are
unimportant.

12 CHAPTER 2. VALUES, TYPES, AND CONTAINERS

X:

(a) All pointers here are equal.

(b) Null pointers.

Figure 2.3: Diagrammatic representations of pointers.

and arrows to represent pointers. Two pointer values are the same if they point to
the same container. For example, all of the arrows in Figure 2.3a represent equal
pointer values. As shown there, we indicate that a container contains a certain
pointer value by drawing the pointer’s tail inside the container. The operation
of following a pointer value to the container at its head (i.e., its point) in order
to extract or store a value is called dereferencing the pointer, and the pointed-to
container is the referent of the pointer.

Certain pointer values are known as null pointers, and point at nothing. In
diagrams, I will represent them with the electrical symbol for ground, or use a
box with a diagonal line through it to indicate a container whose value is a null
pointer. Figure 2.3b illustrates these conventions with a “free-floating” null pointer
value and two containers with a null pointer value. Null pointers have no referents;
dereferencing null pointers is undefined, and generally erroneous.

Value or Object? Sometimes, it is not entirely clear how best to apply the
model to a certain programming language. For example, we model a pair in Scheme
as an object containing two components (car and cdr). The components of the
pair have values, but does the pair as a whole have a value? Likewise, can we
talk about the value in the arrays in Figure 2.2, or only about the values in the
individual elements? The answer is a firm “that depends.” We are free to say that
the container in Figure 2.2a has the value <2.7, 0.18, 2.8>, and that assigning,
say, 0 to the first element of the array replaces its entire contents with the value
<0, 0.18, 2.8>. In a programming language with a lot of functions that deal with
entire arrays, this would be useful. To describe Java, however, we don’t happen to
need the concept of “the value of an array object.”

2.2 Types

The term “type” has numerous meanings. One may say that a type is a set of values
(e.g., “the type int is the set of all values between −231 and 231 − 1, inclusive.”).

2.2. TYPES 13

Or we may say that a type is a programming language construct that defines a set
of values and the operations on them. For the purposes of this model, however,
I’m just going to assume that a type is a sort of tag that is attached to values
and (possibly) containers. Every value has a unique type. This model does not
necessarily reflect reality directly. For example, in typical Java implementations,
the value representing the character ’A’ is indistinguishable from the integer value
65 of type short. These implementations actually use other means to distinguish
the two than putting some kind of marker on the values. For us programmers,
however, this is usually an invisible detail.

Any given programming language provides some particular set of these type tags.
Most provide a way for the programmer to introduce new ones. Few programming
languages, however, provide a direct way to look at the tag on a value (for various
reasons, among them the fact that it might not really be there!).

2.2.1 Static vs. dynamic types

When containers have tags (they don’t have to; in Scheme, for example, they gener-
ally don’t), these tags generally determine the possible values that may be contained.
In the simplest case, a container labeled with type T may only contain values of
type T . In Java (and C, C++, FORTRAN, and numerous other languages), this
is the case for all the numeric types. If you want to store a value of type short

into a container of type int, then you must first coerce (a technical term, meaning
convert) the short into an int. As it happens, that particular operation is often
merely notional; it doesn’t require any machine instructions to perform, but we can
still talk that way.

In more complex cases, the type tag on a container may indicate that the values
it contains can have one of a whole set of possible types. In this case, we say that the
allowable types on values are subtypes of the container’s type. In Java, for example,
if the definition of class Q contains the clause “extends P” or “implements P,”
then Q is a subtype of P; a container tagged to contain pointers to objects of type
P may contain pointers to objects of type Q. The subtype relation is transitive: any
subtype of Q is also a subtype of P. As a special case, any type is a subtype of itself;
we say that one type is a proper subtype of another to mean that it is an unequal
subtype.

If type C is a subtype of type P , and V is a value whose type tag is C, we say
that “V is a P” or “V is an instance of P .” Unfortunately, this terminology makes
it a little difficult to say that V “really is a” P and not one of its proper subtypes,
so in this class I’ll say that “the type of V is exactly P” when I want to say that.

In Java, all objects created by new are anonymous. If P is a class, then the
declaration

P x;

does not mean that “x contains objects of type P,” but rather that “x contains
pointers to objects of type P (or null).” If Q is a subtype of P, furthermore, then the
type “pointer to Q” is a subtype of “pointer to P.” However, because it is extremely

14 CHAPTER 2. VALUES, TYPES, AND CONTAINERS

burdensome always to be saying “x contains a pointer to P,” the universal practice
is just to say “x is a P.” After this section, I’ll do that, too, but until it becomes
automatic, I suggest that you consciously translate all such shorthand phrases into
their full equivalents.

All this discussion should make it clear that the tag on a value can differ from the
tag on a container that holds that value. This possibility causes endless confusion,
because of the rather loose terminology that arose in the days before object-oriented
programming (it is object-oriented programming that gives rise to cases where the
confusion occurs). For example, the following Java program fragment introduces a
variable (container) called x; says that the container’s type is (pointer to) P; and
directs that a value of type (pointer to) Q be placed in x:

P x = new Q ();

Programmers are accustomed to speak of “the type of x.” But what does this mean:
the type of the value contained in x (i.e., pointer to Q), or the type of the container
itself (i.e., pointer to P)?

We will use the phrase “the static type of x” to mean the type of the container
(in the example above, this type is “pointer to P”), and the phrase “the dynamic type
of x” to mean the type of the value contained in x (in the example above, “pointer
to Q”). This is an extremely important distinction! Object-oriented programming
in Java or C++ will be a source of unending confusion to you until you understand
it completely.

2.2.2 Type denotations in Java

A type denotation is a piece of syntax that names a type.

Syntax.

Type: PrimitiveType | ReferenceType
PrimitiveType:

boolean

byte | char | short | int | long

float | double

ReferenceType:
ClassOrInterfaceType | ArrayType

ClassOrInterfaceType: Name TypeArgumentsopt
ClassType: Name TypeArgumentsopt
InterfaceType: Name TypeArgumentsopt
ArrayType: Type []

TypeArguments: < ActualTypeArgument+, >

ActualTypeArgument:
ReferenceType
Wildcard

Wildcard: ? WildcardBoundsopt

2.3. ENVIRONMENTS 15

WildcardBounds:
extends ReferenceType
super ReferenceType

As the names suggest, the Name in a ClassOrInterfaceType must be the name
of a class or interface, the name of a class in a ClassType, and of an interface
in an InterfaceType. We’ve already seen examples of defining simple classes and
interfaces. See §5 for the significance of TypeArguments.

2.3 Environments

In order to direct a computer to manipulate something, you have to be able to
mention that thing in your program. Programming languages therefore provide
various ways to denote values (literal constants, such as 42 or ’Q’) and to denote
(or name) containers. Within our model, we can imagine that at any given time,
there is a set of containers, which I will call the current environment, that allows
the program to get at anything it is supposed to be able to reach. In Java (and in
most other languages as well) the current environment cannot itself be named or
manipulated directly by a program; it’s just used whenever the program mentions
the name of something that is supposed to be a container. The containers in this
set are called frames. The named component containers inside them are what we
usually call local variables, parameters, and so forth. You have already seen this
concept in CS 61A, and might want to review the material from that course.

When we have to talk about environments, I’ll just use the same container
notation used in previous sections. Occasionally, I will make use of “free-floating”
labeled containers, such as

42X:

to indicate that X is a variable, but that it is not important to the discussion what
frame it sits in.

2.4 Applying the model to Java

As modern languages in the Algol family go, Java is fairly simple3. Nevertheless,
there is quite a bit to explain. Here is a summary of how Java looks, as described
in the terminology of our model. We’ll get into the details of what it all means in
a later note.

• All simple containers contain either numeric values, booleans, or pointers
(known as references in Java). (There are also functions, but the manipulation
of function-valued containers is highly restricted, and not entirely accessible
to programmers. We say no more about them here.)

3Algol 60 (ALGOrithmic Language) was the first widely used language with the kind free-format
syntax familiar to C, C++, and Java users. It has, in fact, been called “a marked improvement on
its successors.”

16 CHAPTER 2. VALUES, TYPES, AND CONTAINERS

• All simple containers are named and only simple containers are named. The
names are either identifiers (for variables, parameters, or fields) or non-negative
integers (for array elements).

• All simple containers have well-defined initial values: 0 for numerics, false for
booleans, and null for pointers.

• The referents of pointers are always anonymous structured containers (called
objects in Java).

• Aside from environments, objects are created by means of the new expression,
which returns a pointer (initially the only one) to a new object.

• Each container has a static type, restricting the values it may contain. A
container’s type may be primitive—which in Java terminology means that
it may one of the numeric types or boolean—or it may be a reference type,
meaning that it contains pointers to objects (including arrays). If a container’s
static type is primitive, it is the same as its dynamic type (that is, the type
of the container equals the type of the value). If a container has a reference
type, then its dynamic type is a subtype of the container’s type.

• Named containers comprise local variables, parameters, instance variables,
and class variables. Every function call creates a subprogram frame, (or pro-
cedure frame, or call frame), which contains parameters and local variables.
The new operator creates class objects and array objects, which contain in-
stance variables (also called fields in the case of class objects and elements in
the case of arrays). The type of a class object is called, appropriately enough,
a class. Each class has associated with it a frame that (for lack of a standard
term) I will call a class frame, which contains the class variables (also called
static variables) of the class.

Chapter 3

Numbers

3.1 Integers and Characters

The Scheme language has a notion of integer data type that is particularly con-
venient for the programmer: Scheme integers correspond directly to mathematical
integers and there are standard functions that correspond to the standard arith-
metic operations on mathematical integers. While convenient for the programmer,
this causes headaches for those who have to implement the language. Computer
hardware has no built-in data type that corresponds directly to the mathematical
integers, and the language implementor must build such a type out of more primitive
components. That is easy enough, but making the resulting arithmetic operations
fast is not easy.

Historically, therefore, most “traditional” programming languages don’t provide
full mathematical integers either, but instead give programmers something that
corresponds to the hardware’s built-in data types. As a result, what passes for
integer arithmetic in these languages is at least quite fast. What I call “traditional”
languages include FORTRAN, the Algol dialects, Pascal, C, C++, Java, Basic, and
many others. The integer types provided by Java are in many ways typical.

3.1.1 Integral values and their literals

Syntax

IntegerLiteral: IntegerNumeral IntegerTypeSuffixopt
IntegerNumeral: 0

PositiveDigit DecimalDigit+

0 OctalDigit+

0x HexDigit+

0X HexDigit+

PositiveOctalDigit: 1 | 2 | 3 | 4 | 5 | 6 | 7

OctalDigit: 0 | PositiveOctalDigit
PositiveDigit: PositiveOctalDigit | 8 | 9

DecimalDigit: 0 | PositiveDigit

17

18 CHAPTER 3. NUMBERS

Type Modulus Minimum Maximum

long 264 −263 263 − 1
(−9223372036854775808) (9223372036854775807)

int 232 −231 231 − 1
(−2147483648) (2147483647)

short 216 −215 215 − 1
(−32768) (32767)

byte 28 −27 27 − 1
(−128) (127)

char 216 0 216 − 1
0 (65535)

Table 3.1: Ranges of values of Java integral types. Values of a type represented
with n bits are computed modulo 2n (the “Modulus” column).

HexDigit:
DecimalDigit
a | b | c | d | e | f

A | B | C | D | E | F

IntegerTypeSuffix: l | L

An integer literal is an atomic element of the syntax (or token); it may not contain
whitespace, and must be separated from other tokens that can contain letters and
digits by whitespace or punctuation.

Semantics. The integral values in Java differ from the ordinary mathematical
integers in that they come from a finite set (or domain). Specifically, the five integer
types have the ranges shown in Table 3.1. As we will see in §3.1.2, arithmetic on
Java integers is also different from familiar arithmetic; Java uses modular arithmetic:
when a computation would “overflow” the range of values for a type, the value
yielded is a remainder of division by some modulus.

Only types char, int, and long specifically have literals; to get values of other
types, one can use casts. The cast notation ‘(T) V ’ means “V converted to type
T”. Thus,

(short) 15 // is a short value

(byte) 15 // is a byte value.

The IntegerLiterals above denote values of type long if suffixed with a lower- or
upper-case letter ‘L’, and otherwise denote values of type int. You have your choice
of decimal, octal (base 8), and hexadecimal (base 16) numerals. The digits for the
extra six values needed for base 16 are denoted by the letters a–f in either upper or
lower case.

3.1. INTEGERS AND CHARACTERS 19

One odd thing about the syntax is that there is no provision for negative num-
bers. Instead, negative literals are treated as negated expressions elsewhere in the
grammar, so that, for example, -1 is treated as two tokens, a minus sign followed
by an integer literal. For your purposes, the effect is just about the same. Unfortu-
nately, because of this particular treatment, the language designers felt obliged to
introduce a small kludge. The legal decimal literals range from 0 to 2147483647 and
from 0L to 9223372036854775807L, since those are the ranges of possible positive
values for the types int and long. However, as you can see from Table 3.1, this
limit would not allow you to write the most negative numbers easily, so as a special
case, the two decimal literals 2147483648 and 9223372036854775808L are allowed
as long as they are the operands of a unary minus. This leads to the really obscure
and useless fact that:

x = -2147483648; // is legal, but

x = 0-2147483648; // is not!

And as if this weren’t enough, the range of octal and hexadecimal numerals is
bigger than that of decimal numerals. The maximum decimal numerals are 231 − 1
and 263 − 1, while the maximum octal and hexadecimal numerals have maximum
values of 232 − 1 and 264 − 1. The values beyond the decimal range represent
negative values, as we’ll see in §3.1.2. The reason for this puzzling discrepancy is
the assumption that decimal numerals are intended to represent integers used as
mathematical integers, whereas octal and hexadecimal values tend to be used for
other purposes, including as sequences of bits.

Characters

Character values (type char) are non-negative integers, a fact that causes consid-
erable confusion. Specifically, the integer values 0–65535 represent the characters
specified by the Unicode character set, version 2.0. While you could, therefore,
refer to character values in your program by their integer equivalents, it is generally
considered much better (in particular, more readable) style to use character literals,
which make clear what character you are referring to:

if (c == ’a’) is preferable to if (c == 97)

Syntax.

CharacterLiteral: ’ SingleCharacter ’

’ EscapeSequence ’

SingleCharacter: Any Unicode character except CR, LF, ’ or \
EscapeSequence:

\b | \t | \n | \f | \r | \" | \’ | \\

OctalEscape
OctalEscape: ZeroToThree OctalDigitopt OctalDigitopt
ZeroToThree: 0 | 1 | 2 | 3

20 CHAPTER 3. NUMBERS

Escape Unicode Meaning Escape Unicode Meaning

\b \u0008 Backspace (BS) \r \u000d Carriage return (CR)
\t \u0009 Horizontal tab (HT) \" \u0022 Double quote
\n \u000a linefeed (LF) \’ \u0027 Single quote
\f \u000c Form feed (FF) \\ \u005c Backslash

Table 3.2: Escape sequences for use in character and string literals, with equiva-
lent Unicode escape sequences where they are legal. The carriage return, newline,
backslash, and single quote characters are illegal in character literals, as are their
Unicode escapes. Likewise, return, newline, backslash, and double quote characters
are illegal in string literals.

Here, ‘LF’ and ‘CR’ refer to the characters “linefeed” (also referred to as newline)
and “carriage return.”

The escape sequences are intended to give somewhat mnemonic but still con-
cise representations for control characters (things that don’t show up as printed
characters) and for a few other values beyond the limits of the ASCII character set
(that is, the subset of Unicode in which almost all Java code is written). They also
allow you to insert characters that are not allowed by the SingleCharacter syntax:
carriage returns, linefeeds, single quotes, and backslashes.

An OctalEscape represents a numeric value represented as an octal (base-8)
numeral. It differs from an octal IntegerNumeral only in that it yields a value of
type char rather than int. Octal escapes are considered moderately passé in Java;
\u or the other escape sequences are officially preferred. The other escape sequences
denote the characters indicated in Table 3.2.

Examples.

’a’ // Lower-case a

’A’ // Upper-case A

’ ’ // Blank

’\t’ // (Horizontal) tab character

’\011’ // Another version of horizontal tab

’\u03b4’ // Greek lower-case delta

’δ’ // Another way to write delta (if your

// compiler supports it)

’c’ - ’a’ // The value 2 (’c’ is 99, ’a’ is 97).

’\377’ // Character value 255 (largest octal escape)

’\u00FF’ // Another way to write ’\377’

’ÿ’ // Another way to write ’\377’ (if your

// compiler supports it)

3.1.2 Modular integer arithmetic

The integral arithmetic operators in Java are addition (x+y), subtraction (x-y),
unary negation (-x), unary plus (+x), multiplication (x*y), integer division (x/y),

3.1. INTEGERS AND CHARACTERS 21

and integer remainder (x%y).

Syntax.

UnaryExpression: UnaryAdditiveOperator Operand
UnaryAdditiveOperator: + | -

BinaryExpression: Operand BinaryOperator Operand
BinaryOperator: + | - | * | / | %

Semantics. The integer division and remainder operations yield integer results.
Division rounds toward 0 (i.e., throwing away any fractional part), so that 3/2 is
equal to 1 and both (-3)/2 and 3/(-2) are equal to -1. Division and remainder
are related by the formula

(x / y) * y + (x % y) ≡ x

so that

x % y ≡ x - ((x / y) * y)

Working out a few examples:

5 % 3 ≡ 5 - ((5 / 3) * 3) ≡ 5 - (1*3) ≡ 2

-5 % 3 ≡ (-5) - (((-5) / 3) * 3) ≡ (-5) - ((-1)*3) ≡ -2

5 % (-3) ≡ 5 - ((5 / (-3)) * (-3)) ≡ 5 - ((-1)*(-3)) ≡ 2

(-5) % (-3) ≡ (-5) - (((-5) / (-3)) * (-3))

≡ (-5) - (1*(-3))

≡ -2

Division or remaindering by 0 throws an ArithmeticException (see ??).
On integers, all of these operations first convert (promote) their operands to

either the type int or (if at least one argument is long) the type long. After
this promotion, the result of the operation is the same as that of the converted
operands. Thus, even if x and y are both of type byte, x+y and -x are ints. To be
more specific:

To compute x ⊕ y, where ⊕ is any of the Java operations +, -, *, /, or
%, and x and y are integer quantities (of type long, int, short, char,
or byte),

• If either operand has type long, compute the mathematical result
converted to type long.

• Otherwise, compute the mathematical result converted to type int.

By “mathematical result,” I mean the result as in normal arithmetic, where ‘/’ is
understood to throw away any remainder. Depending on the operands, of course,
the result of any of these operations (aside from unary plus, which essentially does
nothing but convert its operand to type int or long), may lie outside the domain
of type int or long. This happens, for example, with 100000*100000.

22 CHAPTER 3. NUMBERS

The computer hardware will produce a variety of results for such operations,
and as a result, traditional languages prior to Java tended to finesse the question of
what result to yield, saying that operations producing an out-of-range result were
“erroneous,” or had “undefined” or “implementation-dependent” results. In fact,
they also tended to finesse the question of the range of various integer types; in
standard C, for example, the type int has at least the range of Java’s type short,
but may have more. To do otherwise than this could make programs slower on some
machines than they would be if the language allowed compilers more choice in what
results to produce. The designers of Java, however, decided to ignore any possible
speed penalty in order to avoid the substantial hassles caused by differences in the
behavior of integers from one machine to another.

Java integer arithmetic is modular: the rule is that the actual result of any inte-
ger arithmetic operation (including conversion between integer types) is equivalent
to the mathematical result “modulo the modulus of the result type,” where the
modulus is that given in Table 3.1. In mathematics, we say that two numbers are
identical “modulo N” if they differ by a multiple of N :

a ≡ b mod N iff there is an integer, k, such that a − b = kN.

The numeric types in Java are all computed modulo some power of 2. Thus, the
type byte is computed modulo 256 (28). Any attempt to convert an integral value,
x, to type byte gives a value that is equal to x modulo 256. There is an infinity
of such values; the one chosen is the one that lies between −27 (−128) and 27 − 1
(127), inclusive. For example, converting the values 127, 0, and −128 to type
byte simply gives 127, 0, and −128, while converting 128 to type byte gives −128
(because 128−(−128) = 28 = 256) and converting 513 to type byte gives 1 (because
1 − 513 = −2 · 28). The result of 100000*100000, being of type int, is computed
modulo 232 in the range −231 to 231 − 1, giving 1410065408, because

1000002 − 1410065408 = 8589934592 = 2 · 232.

For addition, subtraction, and multiplication, it doesn’t matter at what point
you perform a conversion to the type of result you are after. This is an extremely
important property of modular arithmetic. For example, consider the computation
527 * 1000 + 600, where the final result is supposed to be a byte. Doing the
conversion at the last moment gives

527 · 1000 + 600 = 527600 ≡ −16 mod 256;

or we can first convert all the numerals to bytes:

15 · −24 + 88 = −272 ≡ −16 mod 256;

or we can convert the result of the multiplication first:

527000 + 600 ≡ 152 + 600 = 752 ≡ −16 mod 256.

We always get the same result in the end.

3.1. INTEGERS AND CHARACTERS 23

Unfortunately, this happy property breaks down for division. For example, the
result of converting 256/7 to a byte (36) is not the same as that of converting 0/7 to
a byte (0), even though both 256 and 0 are equivalent as bytes (i.e., modulo 256).
Therefore, the precise points at which conversions happen during the computation
of an expression involving integer quantities are important. For example, consider

short x = 32767;

byte y = (byte) (x * x * x / 15);

A conversion of integers, like other operations on integers, produces a result of type
T that is equivalent to the mathematical value of V modulo the modulus of T . So,
according to the rules, y above is computed as

short x = 32767;

byte y = (byte) ((int) ((int) (x*x) * x) / 15);

The computation proceeds:

x*x --> 1073676289

(int) 1073676289 --> 1073676289

1073676289 * x --> 35181150961663

(int) 35181150961663 --> 1073840127

1073840127 / 15 --> 71589341

(byte) 71589341 --> -35

If instead I had written

byte y = (byte) ((long) x * x * x / 15);

it would have been evaluated as

byte y = (byte) ((long) ((long) ((long) x * x) * x) / 15);

which would proceed:

(long) x --> 32767

32767L * x --> 1073676289

(long) 1073676289L --> 1073676289

1073676289L * x --> 35181150961663

(long) 35181150961663L --> 35181150961663

35181150961663L / 15 --> 2345410064110

(byte) 2345410064110L --> -18

Why this way? All these remainders seem rather tedious to us humans, but
because of the way our machines represent integer quantities, they are quite easy for
the hardware. Let’s take the type byte as an example. Typical hardware represents
a byte x as a number in the range 0–255 that is equivalent to x modulo 256, encoded
as an 8-digit number in the binary number system (whose digits—called bits—are
0 and 1). Thus,

24 CHAPTER 3. NUMBERS

0 --> 000000002

1 --> 000000012

2 --> 000000102

5 --> 000001012

127 --> 011111112

-128 --> 100000002 (≡ 128 mod 256)
-1 --> 111111112 (≡ 255 mod 256)

As you can see, all the numbers whose top bit (representing 128) is 1 represent
negative numbers; this bit is therefore called the sign bit . As it turns out, with this
representation, taking the remainder modulo 256 is extremely easy. The largest
number representable with eight bits is 255. The ninth bit position (1000000002)
represents 256 itself, and all higher bit positions represent multiples of 256. That
is, every multiple of 256 has the form

b0 · · · bn 00000000
︸ ︷︷ ︸

8

,

which means that to compute a result modulo 256 in binary, one simply throws
away all but the last eight bits.

Be careful in this notation about converting to a number format that has more
bits. This may seem odd advice, since when converting (say) bytes (eight bits) to
ints (32 bits), the value does not change. However, the byte representation of -3
is 253, or in binary 111111012 , whereas the int representation of -3 is

111111111111111111111111111111012 = 4294967293.

In converting from a byte to an int, therefore, we duplicate the sign bit to fill in
the extra bit positions (a process called sign extension). Why is this the right thing
to do? Well, the negative quantity −x as a byte is represented by 28 − x, since
28 − x ≡ −x mod 28. As an int, it is represented by 232 − x, and

232 − x = (232 − 28) + (28 − x) = 111111111111111111111111000000002 + (28 − x).

3.1.3 Manipulating bits

Syntax.

UnaryExpression: ~ Operand
BinaryExpression: Operand BinaryOperator Operand
BinaryOperator: & | ^ | | | << | >> | >>>

Semantics. One can look at a number as a bunch of bits, as shown in the preced-
ing section. Java (like C and C++) provides operators for treating numbers as bits.
The bitwise operators—&, |, ^, and ~—all operate by lining up their operands
(after binary promotion) and then performing some operation on each bit or pair
of corresponding bits, according to the following tables:

3.1. INTEGERS AND CHARACTERS 25

Operand Bits (L,R)
Operation (0, 0) (0, 1) (1, 0) (1, 1)

& (and) 0 0 0 1
| (or) 0 1 1 1
^ (xor) 0 1 1 0

Operand Bit
Operation 0 1

~ (not) 1 0

The “xor” (exclusive or) operation also serves the purpose of a “not equal” opera-
tion: it is 1 if and only if its operands are not equal.

In addition, the operation x<<N produces the result of multiplying x by 2N (or
shifting N 0’s in on the right). x>>>N produces the result of shifting N 0’s in on
the left, throwing away bits on the right. Finally, x>>N shifts N copies of the sign
bit in on the left, throwing away bits on the right. This has the effect of dividing
by 2N and rounding down (toward −∞). The left operand of the shift operand is
promoted to int or long, and the result is the same as this promoted type. The
right operand is taken modulo 32 for int results and modulo 64 for long results, so
that 5<<32, for example, simply yields 5.

For example,

int x = 42; // == 0...0101010 base 2

int y = 7; // == 0...0000111

x & y == 2 // 0...0000010 | x << 2 == 168 // 0...10101000

x | y == 47 // 0...0101111 | x >> 2 == 10 // 0...00001010

x ^ y == 45 // 0...0101101 | ~y << 2 == -32 // 1...11100000

~y == -8 // 11...111000 | ~y >> 2 == -2 // 1...11111110

| ~y >>> 2 == 230 − 2
| // 00111...1110

| (-y) >> 1 == -4

As you can see, even though these operators manipulate bits, whereas ints are
supposed to be numbers, no conversions are necessary to “turn ints into bits.”
This isn’t surprising, given that the internal representation of an int actually is a
collection of bits, and always has been; these are operations that have been carried
over from the world of machine-language programming into higher-level languages.
They have numerous uses; some examples follow.

Masking

One common use for the bitwise-and operator is to mask off (set to 0) selected
bits in the representation of a number. For example, to zero out all but the least
significant 4 bits of x, one can write

x = x & 0xf; // or x &= 0xf;

To turn off the sign bit (if x is an int):

x &= 0x7fffffff;

26 CHAPTER 3. NUMBERS

To turn off all but the sign bit:

x &= 0x80000000;

In general, if the expression x&~N masks off exactly the bits that x&N does not.
If n ≥ 0 is less than the word length of an integer type (32 for int, 64 for long),

then the operation of masking off all but the least-significant n bits of a number of
that type is (as we’ve seen), the same as computing an equivalent number modulo
2n that is in the range 0 to 2n − 1. One way to form the mask for this purpose is
with an expression like this:

/** Mask for the N least-significant bits, 0<=N<32. */

int MASK = (1<<n) - 1;

[Why does this work?] With the same value of MASK, the statement

xt = x & ~MASK;

has the interesting effect of truncating x to the next smaller multiple of 2n [Why?],
while

xr = (x + ((1 << n) >>> 1)) & ~MASK;

// or

xr = (x + ((~MASK>1) & MASK)) & ~MASK;

// or, if n > 0, just:

xr = (x + (1 << (n-1))) & ~MASK;

rounds x to the nearest multiple of 2n [Why?]

Packing

Sometimes one wants to save space by packing several small numbers into a single
int. For example, I might know that w, x, and y are each between 0 and 29 − 1. I
can pack them into a single int with

z = (w<<18) + (x<<9) + y;

or

z = (w<<18) | (x<<9) | y;

From this z, I can extract w, x, and y with

w = z >>> 18; x = (z >>> 9) & 0x1ff; y = z & 0x1ff;

(In this case, the >> operator would work just as well.) The hexadecimal value
0x1ff (or 1111111112 in binary) is used here as a mask ; it suppresses (masks out)
bits other than the nine that interest us. Alternatively, you can perform the masking
operation first, extracting x with

x = (z & 0x3fe00) >>> 9;

3.2. FLOATING-POINT NUMBERS 27

In order to change just one of the three values packed into z, we essentially have
to take it apart and reconstruct it. So, to set the x part of z to 42, we could use
the following assignment:

z = (z & ~0x3fe00) | (42 << 9);

The mask ~0x3fe00 is the complement of the mask that extracts the value of x;
therefore z&~0x3fe00 extracts everything but x from z and leaves the x part 0. The
right operand is simply the new value, 42, shifted over into the correct position for
the x component (I could have written 378 instead, but the explicit shift is clearer
and less prone to error, and compilers will generally do the computation for you so
that it does not have to be re-computed when the program runs). Likewise, to add 1
to the value of x, if we know the result won’t overflow 9 bits, we could perform the
following assignment:

z = (z & ~0x3fe00) | ((((z & 0x3fe00) >>> 9) + 1) << 9);

Actually, in this particular case, I could also just write

z += 1 << 9;

[Why?]

3.2 Floating-Point Numbers

Syntax.

UnaryExpression: UnaryAdditiveOperator Operand
UnaryAdditiveOperator: + | -

BinaryExpression: Operand BinaryOperator Operand
BinaryOperator: + | - | * | / | %

Semantics. Just as it provides general integers, Scheme also provides rational
numbers—quotients of two integers. Just as the manipulation of arbitrarily large
integers has performance problems, so too does the manipulation of what are es-
sentially pairs of arbitrarily large integers. It isn’t necessary, furthermore, to have
large rational numbers to have large integer numerators and denominators. For
example, (8/7)30 is a number approximately equal to 55, but its numerator has 28
digits and its denominator has 27. For most of the results we are after, on the other
hand, we need considerably fewer significant digits, and the precision afforded by
large numerators and denominators is largely wasted, and comes at great cost in
computational speed.

Therefore, standard computer systems provide a form of limited-precision ra-
tional arithmetic known as floating-point arithmetic. This may be provided either
directly by the hardware (as on Pentiums, for example), or by means of standard
software (as on the older 8086 processors, for example).

28 CHAPTER 3. NUMBERS

Java has adopted what is called IEEE Standard Binary Floating-Point Arith-
metic. The basic idea behind a floating-point type is to represent only numbers
having the form

±b0.b1 · · · bn−1 × 2e,

where n is a fixed number, e is an integer in some fixed range (the exponent), and
the bi are binary digits (0 or 1), so that b0.b1 · · · bn−1 is a fractional binary number
(the significand) There are two floating-point types:

• float: n = 24 and −127 < e < 128;

• double: n = 53 and −1023 < e < 1024.

In addition to ordinary numbers, these types also contain several special values:

• ±∞, which represent the results of dividing non-zero numbers by 0, or in
general numbers that are beyond the range of representable values;

• −0, which is essentially the same as 0 (they are ==, for example) with some
extra information. The difference shows up in the fact that 1/-0.0 is negative
infinity. Used properly, it turns out to be a convenient “trick” for giving
functions desired values at discontinuities. Take a course in numerical analysis
if you are curious.

• NaN, or Not A Number, standing for the results of invalid operations, such as
0/0, or subtraction of equal infinities.

To test x to see if it is infinite, use Double.isInfinite(x). One checks a value x

to see if it is not a number with Double.isNaN(x) (you can’t use == for this test
because a NaN has the odd property that it is not equal, greater than, or less than
any other value, including itself!) Because of these NaN values, every floating-point
expression can be given a reasonable value.

3.2.1 Floating-Point Literals

Syntax

RealLiteral:
DecimalDigit+ . DecimalDigit∗ Exponentopt FloatTypeopt
. DecimalDigit+ Exponentopt FloatTypeopt
DecimalDigit+ Exponent FloatTypeopt
DecimalDigit+ Exponentopt FloatType

Exponent:
e Signopt DecimalDigit+

E Signopt DecimalDigit+

Sign: + | -

FloatType: f | F | d | D

3.2. FLOATING-POINT NUMBERS 29

As for integer literals, no embedded whitespace is allowed. Upper- and lower-case
versions of FloatType and of the ‘e’ in Exponents are equivalent. Literals that end
in f or F are of type float, and all others are of type double. There are no negative
literals, since the unary minus operator does the trick, as for integer literals.

An Exponent of the form ‘E±N ’ means ×10±N , and otherwise these literals
are interpreted as ordinary numbers with decimal points. For example, 1.004e-2
means 0.01004. However, since the floating-point types do not include all values
that one can write this way, the number you write is first rounded to the nearest
representable value. For example, there is no exact 24-bit binary representation for
0.2; its binary representation is 0.00110011. . . . Therefore, when you write 0.2f,
you get instead 0.20000000298. . . .

Floating-point literals other than zero must be in the range

1.40239846e-45f to 3.40282347e+38f (float)

4.94065645841246544e-324 to 1.79769313486231570e+308 (double)

The classes java.lang.Float and java.lang.Double in the standard library
contain definitions of some useful constants.

Double.MAX VALUE, Float.MAX VALUE The largest possible values of type
double and float.

Double.MIN VALUE, Float.MIN VALUE The smallest possible values of type
double and float.

Double.POSITIVE INFINITY, Float.POSITIVE INFINITY +∞ for types
double and float.

Double.NEGATIVE INFINITY, Float.NEGATIVE INFINITY

−∞ of type double and float.

Double.NaN, Float.NaN A Not-A-Number of type double and float.

3.2.2 Floating-point arithmetic

In what follows, I am going to talk only about the type double. This is the default
type for floating-point literals, and in the type commonly used for computation.
The type float is entirely analogous, but since it is not as often used, I will avoid
redundancy and not mention it further. The type float is useful in places where
space is at a premium and the necessary precision is not too high.

The floating-point arithmetic operators in Java are addition (x+y), subtraction
(x-y), unary negation (-x), unary plus (+x), multiplication (x*y), division (x/y),
and remainder (x%y). The remainder operation obeys the same law as for integers:

(x / y) * y + (x % y) ≡ x

except that division is floating-point division rather than integer division; it doesn’t
discard the fraction.

30 CHAPTER 3. NUMBERS

The result of any arithmetic operation involving ordinary floating-point quanti-
ties is rounded to the nearest representable floating-point number (or to ±∞ if out
of range). In case of ties, where the unrounded result is exactly halfway between
two floating-point numbers, one chooses the one that has a last binary digit of 0
(the rule of round to even.) The only exception to this rule is that conversions of
floating-point to integer types, using a cast such as (int) x, always truncate—that
is, round to the number nearest to 0, throwing the fractional part away1.

The justifications for the round-to-even rule are subtle. In computations involv-
ing many floating-point operations, it can help avoid biasing the arithmetic error
in any particular direction. It also has the very interesting property of preventing
drift in certain computations. Suppose, for example, that a certain loop has the
effect of computing

x = (x + y) - y;

on each of many iterations (you wouldn’t do this explicitly, of course, but it may
happen to one of your variables for certain particular values of the input data). The
round-to-even rule guarantees that the value of x here will change at most once,
and then drift no further (a remarkably hard thing to prove, I’m told, but feel free
to try).

So far, we’ve discussed only the usual cases. Operations involving the extra
values require a few more rules. Division of a positive or negative quantity by zero
yields an infinity, and −0 reverses the sign of the result. Dividing ±0 by ±0 yields
a NaN, as does subtraction of equal infinities, division of two infinite quantities, or
any arithmetic operation involving NaN as one of the operands.

In principle, I’ve now said all that needs to be said. However, there are many
subtle consequences of these rules. You’ll have to take a course in numerical analysis
to learn all of them, but for now, here are a few important points to remember.

Binary vs. decimal

Computers use binary arithmetic because it leads to simple hardware (i.e., cheaper
than using decimal arithmetic). There is, however, a cost to our intuitions to
doing this: although any fractional binary number can be represented as a decimal
fraction, the reverse is not true. For example, the nearest double value to the
decimal fraction 0.1 is

0.1000000000000000055511151231257827021181583404541015625

so when you write the literal 0.1, or when you compute 1.0/10.0, you actually get
the number above. You’ll see this sometimes when you print things out with a little
too much precision. For example, the nearest double number to 0.123 is

0.12299999999999999822364316 . . .

1The handling of rounding to integer types is not the IEEE convention; Java inherited it from
C and C++.

3.2. FLOATING-POINT NUMBERS 31

so that if you print this number with the %24.17e format from our library, you’ll
see that bunch of 9s. Fortunately, less precision will get rounded to something
reasonable.

Round-off

For two reasons, the loop

double x; int k

for (x = 0.1, k = 1; x <= N; x += 0.1, k += 1)

{ ... }

(where 10N < 231) will not necessarily execute 10N times. For example, when N

is 2, 3, 4, or 20, the loop executes 10N − 1 times, whereas it executes 10N times
for other values in the range 1–20. The first reason is the one mentioned above:
0.1 is only approximately representable. The second is that each addition of this
approximation of 0.1 to x may round. The rounding is sometimes up and sometimes
down, but eventually the combined effects of these two sources of error will cause
x to drift away from the mathematical value of 0.1k that the loop naively suggests.
To get the effect that was probably intended for the loop above, you need something
like this:

for (int kx = 1; kx <= 10*N; k += 1) {

double x = kx * 0.1;

// or double x = (double) kx / 10.0;

(The division is more accurate, but slower). With this loop, the values of x involve
only one or two rounding errors, rather than an ever-increasing number. Still,
IEEE arithmetic can be surprisingly robust; for example, computing 20*0.1 rounds
to exactly 2 (a single multiplication is more accurate than repeated additions).

On the other hand, since integers up to 253 − 1 (about 9× 1015) are represented
exactly, the loop

for (x = 1.0, k = 1; x <= N; x += 1.0, k += 1) { ... }

will execute exactly N times (if N < 253) and x and k will always have the same
mathematical value. In general, operations on integers in this range (except, of
course, division) give exact results. If you were doing a computation involving inte-
gers having 10–15 decimal digits, and you were trying to squeeze seconds, floating-
point might be the way to go, since for operations like multiplication and division,
it can be faster than integer arithmetic on long values.

In fact, with care, you might even use floating-point for financial computations,
computed to the penny (it has been done). I say “with care,” since 0.01 is not
exactly representable in binary. Nevertheless, if you represent quantities in pennies
instead of in dollars, you can be sure of the results of additions, subtractions, and
(integer) multiplications, at least up to $9,999,999,999,999.99.

When the exponents of results exceed the largest one representable (overflow),
the results are approximated by the appropriate infinity. When the exponents get

32 CHAPTER 3. NUMBERS

too small to represent at all (underflow), the result will be 0. In IEEE (and Java)
arithmetic, there is an intermediate stage called gradual underflow , which occurs
when the exponent (e in the formula above) is at its minimum, and the first signif-
icand bit (b0) is 0.

We often describe the rounding properties of IEEE floating-point by saying that
results are correct “to 1/2 unit in the last place (ulp),” because rounding off changes
the result by at most that much. Another, looser characterization is to talk about
relative error. The relative-error bound is pessimistic, but has intuitive advantages.
If x and y are two double quantities, then (in the absence of overflow or any kind
of underflow) the computed result, x*y, is related to the mathematical result, x · y,
by

x*y = x · y · (1 + ε), where |ε| ≤ 2−53.

and we say that ε is the relative error (it’s bound is a little larger than 10−16, so
you often hear it said that double-precision floating point gives you something over
15 significant digits). Division has essentially the same rule.

Addition and subtraction also obey the same form of relative-error rule, but with
an interesting twist: adding two numbers with opposite signs and similar magnitudes
(meaning within a factor of 2 of each other) always gives an exact answer. For
example, in the expression 0.1-0.09, the subtraction itself does not cause any
round-off error (why?), but since the two operands are themselves rounded off, the
result is not exactly equal to 0.01. The subtraction of nearly equal quantities tends
to leave behind just the “noise” in the operands (but it gets that noise absolutely
right!).

Spacing

Unlike integers, floating-point numbers are not evenly spaced throughout their
range. Figure 3.1 illustrates the spacing of simple floating-point numbers near 0 in
which the significand has 3 bits rather than Java’s 24 or 53. Because the numbers
get farther apart as their magnitude increases, the absolute value of any round-off
error also increases.

There are numerous pitfalls associated with this fact. For example, many numer-
ical algorithms require that we repeat some computation until our result is “close
enough” to some desired result. For example, we can compute the square root of a
real number y by the recurrence

xi+1 = xi +
y − x2

i

2xi

where xi is the ith approximation to
√

y. We could decide to stop when the error
|y − x2

i
| become small enough2. If we decided that “small enough” meant, say,

“within 0.001,” then for values of y less than 1 we would get very few significant
digits of precision and for values of y greater than 1013, we’ll never stop. This is one

2In actual practice, by the way, this convergence test isn’t necessary, since the error in x
2

i as a
function of i is easily predictable for this particular formula.

3.2. FLOATING-POINT NUMBERS 33

· · · · · ·
0 1/8 1/4 1/2

Figure 3.1: Non-negative 3-bit floating-point numbers near 0, showing how the
spacing expands as the numbers get bigger. Each tick mark represents a floating-
point number. Assume that the minimum exponent is −4, so that the most closely
spaced tick marks are 2−6 = 1/64 apart.

reason relative error, introduced in the last section, is useful; no matter where you
are on the floating-point scale, round off always produces the same relative error.

Comment on floating-point equality.

Some textbooks incorrectly tell you never to compare floating-point numbers for
equality, but rather to check to see whether they are “close” to each other. This is
highly misleading advice (that’s more diplomatic than “wrong,” isn’t it?). It is true
that naive uses of == can get you into trouble; for example, you should not expect
that after setting x to 0.0001, x*10000==1.0, since x will not be exactly equal to
1/10000. That simply follows from the behavior of round off, as we’ve discussed.

However, one doesn’t have to be naive. First, we’ve seen that (up to a point)
double integers work like ints or longs. Second, IEEE standard arithmetic is de-
signed to behave very well around many singularities in one’s formulas. For example,
suppose that f(x) approaches 0 as x approaches 1—for concreteness, suppose that
f(x) approximates lnx—and that we want to compute f(x)/(1 − x), giving it the
value 1 when x = 1. We can write the following computation in Java:

if (x == 1.0)

return 1.0;

else

return f(x) / (1.0 - x);

and it will return a normal number (neither NaN nor infinity) whenever x is close to
1.0. Despite rounding errors, IEEE arithmetic guarantees that 1.0-x will evaluate
to 0 if and only if x==1.0.

34 CHAPTER 3. NUMBERS

Chapter 4

Strings, Streams, and Patterns

In olden times (that is, until the early 1980’s), essentially all communication with
ordinary application programs was in the form of text: that is, strings (sequences)
of characters, sometimes presented as broken into lines and pages. The situa-
tion is much more varied these days—what with bit-mapped displays, point-and-
click, voice communication, multi-media, and the like—and, of course, computer-
controlled machinery (industrial robots, on-board flight-control systems) is an ex-
ception that has been with us nearly since the beginning. Nevertheless, the manip-
ulation of text still has an important place, and your author’s somewhat antique
position is that text is often a distinct improvement over some more “modern”
interfaces that have displaced it.

Java provides a number of library classes that deal with plain textual data. The
primitive type char represents single characters in the Unicode character set. Most
commonly, these crop up in your programs when you extract them from Strings,
using the charAt method. Corresponding to this primitive type, the Java library
contains the wrapper class Character, which defines a number of useful functions
for manipulating individual characters. The class you’re likely to deal with most is
String, which, as we’ve seen, gives us sequences of characters, suitable for reading
from a terminal or file or for printing. This class allows you to compare strings and
extract pieces of them, and thus to parse written notation (that is, to resolve it into
its grammatical constituents and determine its meaning). However, complex anal-
ysis of text is quite tedious with the primitive tools provided by String and recent
versions of Java have added a new class, Pattern (in package java.util.regex),
which as its name suggests, provides a language for describing sets of Strings.
Together with another new type, java.util.Scanner (§4.6), you can describe the
format of textual input. On the other side of the coin, the construction of Strings
generally involves the concatenation of individual pieces, some of which are con-
stants and some of which are created dynamically. Here, too, Java 2, version 1.5
has introduced a set of convenient formatting methods, adapted from C, for complex
String construction (§4.2.1).

Input and output by a program requires additional abstractions (§4.4). Again,
these involve sequences of characters or other symbols (such as bits or bytes). How-
ever, there is a very strong bias towards producing output and consuming input

35

36 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

incrementally, so that the program need never have the complete sequence of inputs
or outputs on hand simultaneously. Historically, this was for reasons of efficiency
and capacity (if you are processing billions of characters using a computer with
mere kilobytes of memory, you have little choice).

4.1 Bytes and Characters

It is often said that the business of computers is “processing symbols.” Ultimately,
this means that the atomic constituents of a computer’s data come from some finite
alphabet and these constituents’ only characteristic is that they are all distinct from
one another. So, you often hear that “computers deal with 1’s and 0’s”—that the
basic alphabet consists of the set of bits: {0, 1}. While this is true, our programs
usually deal with data in somewhat larger pieces—clumps of bits, if you will. These
days, the smallest of these is typically the byte, 8 bits, represented directly in Java
as the type byte.

However, the fact our basic alphabet consists of numbers is misleading. The
whole purpose of symbols is to stand for things. In the case of computers, we use
numbers to stand for everything. In particular, we use them to stand for printed
characters. The Java type char, which we think of as being a set of printed char-
acters, is an integer type, whose members can be added and multiplied. If we want
to use chars to represent characters (as we usually do), this becomes evident by
how we use them. So, if the computer sends the number 113 to a printing device
in a particular way, it will cause the lower-case letter ’q’ to be printed. Thus, we
humans will think of the computer as dealing with letters, whereas internally it is
dealing with numbers.

4.1.1 ASCII and Unicode

Most programs today are written using an alphabet (or, as we computer people often
say, character set) that goes by the name ASCII, standing for American Standard
Code for Information Interchange. The same standard character set suffices for
most of the textual input and output by programs. This standard defines both a
set of characters and a computer-friendly encoding that maps each character to an
integer in the range 0–127, as detailed in Table 4.1. This set contains ordinary,
printable characters (upper- and lower-case letters, digits, punctuation marks, and
blanks), and an assortment of non-printing control characters (so called because
in the old days, they used to be used to control teletypes or other communication
devices). Among the control characters, there are several format effectors whose
effect is to control spacing and line breaks—things like horizontal and vertical tabs,
line feed, carriage return, form feed (which skips to a new page), and backspace.
See §3.1.1 for a further discussion.

Needless to say, there are both technical and political consequences to having a
character set that is called “American” and that only has room for 127 characters.
To accommodate an international clientele, a group called the Unicode Consortium
has developed a much more extensive character set (generally called Unicode) with

4.1. BYTES AND CHARACTERS 37

65536 (216) possible codes that incorporates many of the world’s alphabets. Its
first 127 characters are a copy of ASCII (so a program written entirely in ASCII
is also written in Unicode). The other characters may appear in Java programs,
just like ordinary ASCII characters. That is, those that are letters or digits (in any
alphabet) are perfectly legal in identifiers, and all the extra characters are legal as
character or string literals (§4.2, S3.1.1) and in comments.

Unfortunately, most of our compilers, editors, and so forth are geared to the
ASCII character set. Therefore, Java defines a convention whereby any Unicode
character may be written with ASCII characters. Before they do anything else to
your program, Java translators will convert notation \uabcd (where the four italic
letters are hexadecimal digits) into the Unicode character whose encoding is abcd16.
The notation actually allows you to insert any number of ‘u’, as in \uuu0273. In
principle, you could write the program fragment

x= 3;

y=2;

as

\u0078\u003d\u0020\u0033\u003b\u000a\u0079\u003d\u0032\u003b

but who would want to? The intention is to use Unicode for cases where you need
non-ASCII letters. For example, if you wanted to write

double δ = Ψ_1 - Ψ_0;

you could write

double \u03b4 = \u03a8_1 - \u03a8_0;

and the compiler would be perfectly happy. Alas, getting this printed with real
Greek letters is a different story, requiring the right editors and other programming
tools. That topic is somewhat beyond our scope here.

Most of the early work in computers was done in the United States and Western
Europe. In the United States, the ASCII character set (requiring codes 0–127)
suffices for most text, and the addition of what are called the Latin-1 symbols
(codes 128-255) take care of most of Europe’s needs (they include characters such
as ‘é’ and ‘ö’). Therefore, characters in those parts of the world fit into 8 bits, and
there has been a tendency to use the terms “byte” and “character” as if they were
synonymous. This confusion remains in Java to some extent, although to a lesser
extent than predecessors such as C. For example, as you will see in §4.4, files are
treated as streams of bytes, but the methods we programmers apply to read or write
generally deal in chars. There is some internal translation that the Java library
performs between the two (which in the United States usually consists in throwing
away half of each char on output and filling in half of each char with 0 on input)
so that we don’t usually have to think about the discrepancy.

38 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

d1

d0 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O

1 ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[^\ ^] ^^ ^

2 ! " # $ % & ’ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [] ^

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Table 4.1: ASCII codes (equivalent to the first 128 Unicode characters). The code
for the character at line d0 and column d1 is 0xd0d1. The characters preceded by
carats ^ are control characters, further described in Table 4.2; the notation means
that the character ^c can be produced on a typical computer keyboard by holding
down the control-shift key while typing c.

Table of Control Characters

Name Ctrl Meaning Name Ctrl Meaning

NUL ˆ@ Null DLE ˆp Data link escape
SOH ˆa Start of heading DC1 ˆq Device control 1
STX ˆb Start of text DC2 ˆr Device control 2
ETX ˆc End of text DC3 ˆs Device control 3
EOT ˆd End of transmission DC4 ˆt Device control 4
ENQ ˆe Enquiry NAK ˆu Negative acknowledge
ACK ˆf Acknowledge SYN ˆv Synchronize
BEL ˆg Bell ETC ˆw End transmitted block

BS ˆh Backspace CAN ˆx Cancel
HT ˆi Horizontal tab EM ˆy End of medium
LF ˆj Line feed SUB ˆz Substitute
VT ˆk Vertical tab ESC ˆ[Escape
FF ˆl Form feed FS ^\ File separator
CR ˆm Carriage return GS ˆ] Group separator
SO ˆn Shift out RS ^^ Record separator
SI ˆo Shift in US ^_ Unit separator

DEL ˆ? Delete or rubout

Table 4.2: ASCII control characters and their original meanings.

4.2. STRINGS 39

4.1.2 The class Character

Besides its use as a wrapper for primitive characters (see §5.5), the class Character
is stuffed with useful methods for handling chars. The ones most likely to be of
interest first are the ones that distinguish types of characters:

Character.isWhitespace(c) is true iff char c is “whitespace”—that is, a blank,
tab, newline (end-of-line in Unix), carriage return, form feed (new page), or
one of a few other esoteric control characters.

Character.isDigit(c), Character.isLetter(c), Character.isLetterOrDigit(c)
test whether c is a digit (’0’–’9’), letter (’a’–’z’ and ’A’–’Z’). Actually, the com-
plete set of letters and digits is much larger, comprising most of the world’s
major alphabets.

Character.isUpperCase(c), Character.isLowerCase(c) test for upper- and lower-
case letters.

As a stylistic matter, it is always better to use these than to test “by hand:”

/* Good */ /* Bad */ /* REALLY Bad */

if (Character.isDigit(x)) if (x>=’0’ && x<=’9’) if (x>=48 && x<=57)

A few other routines are sometimes useful for text manipulation:

Character.toLowerCase(c), Character.toUpperCase(c) return the lower- or upper-
case equivalent of c, if it’s a letter, and otherwise just c.

Character.digit(c, r) returns the integer equivalent of c as a radix-r digit, or
−1 if c isn’t such a digit. So digit(’3’, 10) == 3, digit(’A’, 16) == 10,
digit(’9’, 8) == -1.

Character.forDigit (n, r) converts numbers back into digits. So forDigit(5, 10) == ’5’,
forDigit(11,16) == ’b’.

If you happen to have a method where you use these a lot, you’ll soon get tired
of writing Character.. Fortunately, placing

import static java.lang.Character.*;

among the import statements at the beginning of a program file will make it
unnecessary to write the qualifier.

4.2 Strings

Pages 41–43 list the headers of the extensive set of operations available on Strings.
In addition, the core Java language provides some useful shorthand syntax for using
some of these operations, as described in §4.2

Objects of type String are immutable: that is, the contents of the object pointed
to by a particular reference value never changes. It is not possible to “set the fifth
character of string y to c.” Instead, you set y to an entirely new string, so that
after

40 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

y = "The bat in the hat is back.";

x = y;

y = y.substring (0, 4) + ’c’ + y.substring (5);

the variable y now points to the string

The cat in the hat is back.

while x (containing y’s original value) still points to

The bat in the hat is back.

This property of Strings makes certain uses of them a bit clumsy or slow, so there
is another class, StringBuffer, whose individual characters can be changed (see
§??).

4.2.1 Constructing Strings

You will almost never have to construct Strings using new String(· · ·), so I have
not bothered to show any in Figure 4.1. String literals (like "" or "Hello!") handle
most constant strings.

The valueOf methods allow you to form Strings from primitive values. For
example,

String.valueOf (130+3) is "133"

String.valueOf (true) is "true"

String.valueOf (1.0/3.0) is "0.3333333333333333"

Normally, you don’t need these routines, because the concatenation operator (+) on
String uses valueOf to convert non-string arguments. For example,

"The answer is " (130 + 3) is "The answer is 133"

"" + (130 + 3) is "133"

When applied to Objects (reference-type values), valueOf (and therefore String
concatenation) becomes particularly interesting. For non-null reference values, it
uses the toString operator to convert the object to a String. Now, this function
is defined in class Object, and therefore can be overridden in any user-defined type.
You can therefore control how types you create are printed—a very pretty example
of object-oriented function dispatching. For example, suppose I define

/** A point in 2-space. */

class Point {

public double x, y;

· · ·
public String toString () {

return "(" + x + "," + y + ")";

}

}

4.2. STRINGS 41

package java.lang;

public final class String

implements java.io.Serializable, Comparable<String>, CharSequence

{

/* Unless otherwise noted, the following routines will throw a

* NullPointerException if given a null argument and

* IndexOutOfBoundsException if a non-existent portion of a

* String is referenced. */

/** A Comparator for which

* compare(s0, s1) == s0.compareToIgnoreCase (s1)

* for Strings s0 and s1 (used for specifying the order of

* Strings in sorted lists and the like). */

public static final java.util.Comparator<String> CASE_INSENSITIVE_ORDER;

/* Conversions and translations */

/** The following 6 functions all return a printable

* representation of their argument. */

public static String valueOf(char x);

public static String valueOf(double x);

public static String valueOf(float x);

public static String valueOf(int x);

public static String valueOf(long x);

public static String valueOf(boolean x);

/** If OBJ == NULL, then the string "null". Otherwise,

* same as OBJ.toString (). */

public static String valueOf(Object obj);

/** A String that is formed by converting the trailing arguments

* (0 or more Objects) into Strings according to the pattern given

* in FORMAT. See §4.2.1 for details. */

public String format (String format, Object ... args);

/* Accessors */

/** The length of this. */

public int length();

/** Character #K of this (numbering starts at 0). */

public char charAt(int k);

/** The String whose characters are charAt(b)..charAt(e-1). */

public String substring(int b, int e);

/** Same as substring(b, length()). */

public String substring(int b);

Continues. . .

Figure 4.1: Excerpts from class String, part 1. Excludes bodies.

42 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

Class String, continued.

/* Predicates */

/** Compare this String to STR lexicographically. Returns a

* value less than 0 if this String compares less than STR,

* greater than 0 if this String is greater than STR, and 0

* if they are equal. */

public int compareTo(String str);

/** Same as compareTo ((String) obj). Thus, throws a

* ClassCastException if OBJ is not a String. */

public int compareTo(Object obj);

/** As for compareTo(STR), but ignores the distinction between

* upper- and lower-case letters. */

public int compareToIgnoreCase(String str);

/** If FOLD is false, equivalent to

* substring(K0,K0+LEN).compareTo(S.substring(K1,K1+LEN)) == 0,

* and otherwise (if FOLD is true) equivalent to

* 0 == substring(K0, K0+LEN)

* .compareToIgnoreCase (S.substring(K1, K1+LEN))

* except that it returns false if either substring operation

* would cause an exception. */

public boolean regionMatches(boolean fold, int k0,

String S, int k1, int len);

/** Same as regionMatches (false, K0, S, K1, LEN) */

public boolean regionMatches(int k0, String S, int k1, int len);

/** Same as

* OBJ instanceof String && compareTo ((String) OBJ) == 0. */

public boolean equals(Object obj);

/** Same as compareToIgnoreCase (STR) == 0. */

public boolean equalsIgnoreCase(String str);

/** Same as regionMatches (K0, STR, 0, STR.length ()) */

public boolean startsWith(String str, int k0);

/** Same as startsWith (0, STR) */

public boolean startsWith(String str);

/** Same as startsWith (length () - STR.length (), STR). */

public boolean endsWith(String str);

/* Conversions and translations */

/** The following four routines return lower- or upper-case

* versions of this String. The LOCALE argument, if present,

* modifies the result in the case of Turkish. */

public String toLowerCase();

public String toUpperCase();

Continues. . .

Figure 4.1, continued: The class String, part 2.

4.2. STRINGS 43

Class String, continued.

/* Non-destructive modifications */

/** Returns a new string consisting of this string concatenated

* with S. */

public String concat(String S);

/** A string copied from this, but with all instances of C0

* replaced by C1. */

public String replace(char c0, char c1);

/** The string resulting from trimming all characters that are

* <= ’ ’ (space) from both ends of this. Thus, trims blanks,

* tabs, form-feeds, and in fact, all ASCII control

* characters. */

public String trim();

/* Searches */

/** The smallest (first) k>=S such that C == charAt(k), or -1

* if there is no such k. */

public int indexOf(int c, int s);

/** Same as indexOf (C, 0). */

public int indexOf(int c);

/** The largest (last) k<=S such that C == charAt(k), or -1

* if there is no such k. */

public int lastIndexOf(int c, int s);

/** Same as lastIndexOf (C, length ()-1). */

public int lastIndexOf(int c);

/** The smallest (first) k>=S such that startsWith (TARGET, S),

* or -1 if there is none. */

public int indexOf(String target, int s);

/** Same as indexOf (TARGET, 0) */

public int indexOf(String target);

/** The largest (last) k<=S such that startsWith (TARGET, S), or

* -1 if there is none. The last occurrence of the empty

* string, "", is at length (). */

public int lastIndexOf(String target, int s);

/** Same as lastIndexOf (TARGET, length ()) */

public int lastIndexOf(String target);

/* Miscellaneous. */

/** Returns this string. */

public String toString();

/** Returns an integer hash code for this string. The actual

* code returned is the Java int equal to

* s031n−1 + s131n−2 + . . . + sn−1 mod 232 */

public int hashCode();

/** A String .equal to this and having the property that

* s0.equals (s1) iff s0.intern () == s1.intern (). */

public String intern();

}

Figure 4.1, continued: The class String, part 3.

44 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

Now if in a program I write something like

Point start = ...;

· · ·
System.out.println ("Starting point: " + start);

// same as "Starting point: " + String.valueOf (start)

I could see printed

Starting point: (1.1,-2.3)

There is a default toString that works for all objects. On String, it is simply the
identity function.

To construct more complicated Strings, you will generally use A.concat(B),
more often written conveniently as A + B, or the extremely powerful method
format, a welcome addition to Java that came in with Java 2, version 1.5.

To understand the idea behind format, it’s best to look at an example. Suppose
that I am trying to create a String of the form

"Average of 1000 inputs: 29.65, standard deviation: 4.81."

where the numbers come from variables N, mean, and sigma. I can use concatenation
and write this as

"Average of " + N + " inputs: " + mean + ", standard deviation: " + sigma;

This works, but has the slight problem that mean and sigma get printed with how-
ever many decimal places it takes to represent their value unambiguously, whereas
we were content with two places. You might also object that it looks a tad messy.
Now, there is another way to produce the String we want:

String.format ("Average of %d inputs: %.2f, standard deviation: %.2f",

N, mean, sigma);

which inserts the values of N, mean, and sigma at the places indicated by the format
specifiers %d (which means, “format as a decimal integer”), and %.2f (which means
“format as a decimal numeral rounded to two places to the right of the decimal
point”). C programmers will recognize the format specifiers from the printf series
of functions in the C library. The first argument to format is called the format
string, and the rest are simply additional arguments, which we index from 1 (so N

is argument 1, and sigma is argument 3).
Java has an extensive set of format specifiers, including a whole set (not found

in C) that handles dates and times. You’ll find a full description in the on-line
documentation for java.util.Formatter. Here, we’ll just do a quick summary of
some useful ones.

Most format specifiers have the general form

%[K$][flags][W][.P]C

where square brackets (‘[· · ·]’) here indicate optional parts:

4.2. STRINGS 45

C specifies the conversion to be applied to the argument to make it into a String.
In most cases, it is a single character.

K is an optional integer index, indicating which of the arguments is to be converted.
By default, format will take the arguments in order, so that our format-string
example above is equivalent to

"Average of %1$d inputs: %2$.2f, standard deviation: %3$.2f",

W is an optional non-negative integer width, giving the minimum size of the con-
verted string.

P is an optional non-negative integer precision, that restricts the number of char-
acters in some way, depending on C.

flags are characters that modify the meaning of C.

Table 4.3 shows some of the most useful values of C. The categories in that
table refer to possible types of arguments:

integral the integer numeric types int, short, long, and byte (or more accurately,
the corresponding “boxed” types Integer, Short, Long, and Byte: see §5.5),
plus java.math.BigInteger (a class that represents all the integers, or at
least those that fit in memory).

general any type.

floating point the numeric types float and double (again, more accurately Float

and Double), plus java.math.BigDecimal (a class that represents all rational
numbers expressible in finite decimal notation).

none doesn’t use an argument.

The flag characters generally have different meanings for different types, as de-
tailed above. However, the ‘-’ flag always means “left justify within the specified
width (W)”. So,

String.format ("|%-5d|%5d|", 13, 13) produces "|13 | 13|"

4.2.2 Aside: Variable-Length Parameter Lists

I sort of snuck a new feature past in the discussion of format. As shown in Fig-
ure 4.1, its definition begins

public String format (String format, Object ... args)

Those dots are actually written as shown, and mean “any number of parameters may
follow here, each of which must be an Object.” You may actually write something
like this as the last parameter in any method definition. The type need not be
Object. Although it looks like a major new mechanism, it’s actually a pretty simple
shorthand for something you could write otherwise. Let’s take a full example with
an actual implementation:

46 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

Conversion Category Description

‘d’ integral format as a decimal integer. With the ‘0’ flag, pad on
the left with 0s if necessary to get width W .

‘o’ integral format as an octal (base 8) integer. With the ‘#’ flag,
always start with 0 digit. The ‘0’ flag works as for ‘d’.

‘x’, ‘X’ integral format as a hexadecimal (base 16) integer. With ‘X’,
use upper-case letters. The ‘0’ flag works as for ‘d’.
With the ‘#’ flag, always start with ‘0x’ or ‘0X’.

‘f’ floating point format as a number with decimal point without an
(fixed point, as in 186000). If present, P gives the
number of decimal places.

‘e’, ‘E’ floating point format in scientific notation (as in 1.86e5). If present,
P is the number of digits after the decimal point.
With ‘E’, uses upper-case ‘E’ (1.86E5).

‘g’, ‘G’ floating point format in ‘f’ or ‘e’ (‘E’ in the case of ‘G’) format,
depending on size. If present, P is the number of
significant figures.

‘s’, ‘S’ general convert to String, usually using toString. With
‘S’, convert to upper case first. If present, P is the
maximum number of characters (any extra characters
are dropped). It’s possible for a type to provide even
more control over its ‘%s’ format by implementing the
Formattable interface. See the full documentation.

‘n’ none an end of line on output.
‘%’ none a percent sign (so, to output “33%”, you’d use the

format specifiers “%d%%”).

Table 4.3: Common format conversion characters and their meanings. See the text
for the meaning of “category.”

4.2. STRINGS 47

/** A String consisting of the concatenation of the items in ARGS,

* separated by SEPARATOR. */

public static String makeList (String separator, String ... args) {

String result;

result = "";

for (int i = 0; i < args.length; i += 1) {

if (i > 0)

result += separator;

result += args[i];

}

return result;

}

Now with this definition, we can write:

makeList (" ", "The", "quick", "brown", "fox")

produces "The quick brown fox"

Also,

String[] words = { "The", "quick", "brown", "fox" };

makeList (" ", words) produces "The quick brown fox"

has the same result. What is happening here is simply that the definition of the
parameter with the ellipses (. . .), also known as a varargs parameter , is actually an
array, as if the definition had been written

public static String makeList (String separator, String[] args) {

except that when the Java compiler sees that you have not given it an array (as in
the first call to makeList above), it creates one for you, so that

makeList (" ", "The", "quick", "brown", "fox")

is implicitly re-written to
makeList (" ", new String[] {"The", "quick", "brown", "fox"})

The Scheme and Common Lisp languages have a similar feature.
In the case of format, something else is apparently also going on, because (as

in some of our examples) we can supply arguments of type int or double, which
are not Objects. We’ll see how that works in §5.5.

4.2.3 String Accessors

The accessors let you get at individual characters or substrings of a String. Char-
acters are numbers from 0, so that the last is at index length()-1. Substrings
are specified by giving the index of the first character of the substring and the
index just beyond that of the last character, which seems a little odd, but has
its advantages. An attempt to fetch non-existent characters raises the exception
IndexOutOfBoundsException.

48 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

Example: Squeeze out selected character.

/** Return S with all occurrences of C removed. */

static String squeeze (String S, char c) {

String S2;

S2 = "";

for (int i = 0; i < S.length; i += 1)

if (S.charAt (i) != c)

S2 += S.charAt (i);

return S2;

}

Here is another method, using substring:

/** Return S with all occurrences of C removed. */

static String squeeze (String S, char c) {

int i;

i = 0;

while (i < S.length) {

if (S.charAt (i) != c)

i += 1;

else

S = S.substring (0, i) + S.substring (i+1);

}

return S;

}

The original string object is not changed in either of these (indeed, it is impossible
to do so).

4.2.4 String Comparisons, Tests, and Searches

One very common pitfall (sometimes even for experienced programmer) is that
the equality operator (==) does not test equality of the contents in Strings. When
applied to Strings, it has its usual meaning: pointer equality. Within a given class,
all character-by-character identical string literals and constant String expressions
refer to the same String object; however, every application of new creates a new
object, so that

String x = "Foo";

x == new String (x) // false

new String (x) == new String (x) // false

x == x // true

x == "Foo" // true (in same class)

x.equals (new String (x)) // true

The intern function on strings in effect chooses a single String object amongst all
those that are equal (contain the same character sequence). However, I suggest that

4.3. STRINGBUILDERS 49

you generally avoid such tricks except where speed is needed, and use the equals

and compareTo methods (and their ilk) for comparing strings.

4.2.5 String Hashing

The hashCode function is a hashing function that facilitates the creation of search
structures for strings. Because it depends only on the characters in the string, it
has the necessary property for all hash functions, that

S0.hashCode()==S1.hashCode() if S0.equals(S1)}

for strings S0 and S1. You might think that the function described in the documen-
tation comment is slow to compute, but because 31 = 25 − 1, the following fairly
inexpensive function computes the same value:

/** Compute S.hashCode () */

public static int hashCode (String s) {

int r;

r = 0;

for (int i = 0; i < s.length (); i += 1)

r = (r<<5) - r + s.charAt (i);

return r;

}

4.3 StringBuilders

You can think of a StringBuilder as a mutable (modifiable) String1. Use them to
build up strings quickly (that is, without having to create a new object each time
you add a character). In fact, the Java system itself uses StringBuilders behind
the scenes to implement the ‘+’ operator on Strings.

For example, suppose you wanted to take an array of integers and create a
String consisting of those integers separated from each other by slashes (’/’). That
is, you’d like

join (new int[] { 42, -128, 70, 0 }) to produce "42/-128/70/0"

Here’s one approach:

public static String join (int[] A) {

StringBuilder result = new StringBuilder ();

for (int i = 0; i < A.length; i += 1) {

if (i > 0)

1The StringBuilder class is new with Java 1.5. It is essentially identical to an older class,
StringBuffer, but its methods are significantly faster because they don’t attempt to deal with
situations where multiple threads try to operate on the same StringBuilder simultaneously (such
simultaneous operations are free to blow up in arbitrary ways). This makes perfect sense, since
one seldom intends to have more than one thread add text to any given StringBuilder.

50 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

result.append (’/’);

result.append (A[i]);

}

return result.toString ();

}

4.4 Readers, Writers, Streams, and Files

At some point, useful programs communicate with the outside world. While graph-
ical user interfaces can be useful for interaction, there is a great deal of communi-
cation that can be described simply as the transmission of a sequence of characters,
bytes, bits, or generally symbols from some finite alphabet. When your browser
requests a Web page, for example, what actually happens under the hood is that
it codes its request as a stream of characters and receives in return a stream of
characters, which it then interprets as fancily formatted page. To the programs
that manipulate them, everything from Java source programs to Microsoft Word
documents to error messages written on your screen look like streams of characters.
So it’s not surprising to find that the Java library contains numerous classes and
interfaces dedicated to several forms of the abstract notion of “a stream of symbols.”

This area is an instance of where object-oriented programming languages can be
useful. The problem is that their are many potential sources and destinations for
streams of characters, but the programs that deal with those characters (interpret
or produce them) are indifferent to their source, and might be useful for streams of
many different origins. As with other situations of this sort, we react by defining an
abstraction that captures just those universal characteristics of a “stream of charac-
ters” that programs need and expressing this abstraction within our programming
language as some kind of interface.

An obvious question to ask is why a “stream of characters” should be anything
other than an “array of characters” or “list of characters.” What justification is
there for a new concept? There are a couple of reasons:

• There is not necessarily a way to know the length of a stream of characters.
Indeed, it need not have any finite length a priori.

• It is the nature of an array or list that one always has access to its entirety.
There is no notion of “finishing with” element k of a list; if you accessed it
once, your program is perfectly entitled to access it again. The implementa-
tion is required to keep all data in the an array or list available, so that the
size of a program becomes proportional to the amount of data it processes.
Needless to say, this is a problem in the case of input to a program that runs
indefinitely. However, it is also an efficiency issue for programs that access
data sequentially, and don’t need to go back to element k after they’ve finished
with it.

In Java, the situation is rather complicated, because the language and its library
have been through a number of major revisions, each one of which seems to have

4.4. READERS, WRITERS, STREAMS, AND FILES 51

package java.lang;

public final class StringBuilder

implements java.io.Serializable, CharSequence {

/* Unless otherwise noted, the following routines will throw a

* NullPointerException if given a null argument and

* IndexOutOfBoundsException if a non-existent portion of a String

* or StringBuilder is referenced. */

/* Constructors */

/** An empty (length() == 0) StringBuilder. */

public StringBuilder();

/** A new StringBuilder whose initial contents are INIT */

public StringBuilder(String init);

/* Accessors */

/** The current length of this. */

public int length();

/** Character #K of this (numbering starts at 0). */

public char charAt(int k);

/** The String whose characters are charAt(b)..charAt(e-1). */

public String substring(int b, int e);

/** Same as substring(b, length()). */

public String substring(int b);

/** Sets DEST[D0] to charAt(B0), DEST[D0+1] to charAt(B0+1), ...

* up but not including charAt(END0). Exception if DEST is

* null or not big enough. */

public void getChars(int b0, int end0, char[] dest, int d0);

/** The contents of this as a String. (Further changes to this

* StringBuilder don’t affect the String.) */

public String toString();

Continues. . .

Figure 4.2: The class StringBuilder, part 1. Excludes bodies and deprecated
(obsolete) functions.

52 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

/* Modifiers */

/** Insert X into this StringBuilder, putting its first character

* at position K (0 <= K <= length()). Move the original

* characters starting at K to the right to make room, and

* increase the length as needed. */

public StringBuilder insert(int k, String x);

/** Each remaining insert operation, insert(k, ARGS), is

* equivalent to insert(k, String.valueOf(ARGS)). */

public StringBuilder insert(int k, char x);

public StringBuilder insert(int k, double x);

public StringBuilder insert(int k, float x);

public StringBuilder insert(int k, int x);

public StringBuilder insert(int k, long x);

public StringBuilder insert(int k, boolean x);

public StringBuilder insert(int k, Object obj);

public StringBuilder insert(int k, char[] C, int k0, int len);

public StringBuilder insert(int k, char[] C);

/** The operations append(ARGS) are all equivalent to

* insert(length(), ARGS) */

public StringBuilder append(char x);

public StringBuilder append(double x);

public StringBuilder append(float x);

public StringBuilder append(int x);

public StringBuilder append(long x);

public StringBuilder append(boolean x);

public StringBuilder append(Object x);

public StringBuilder append(String x);

public StringBuilder append(char[] C, int k0, int len);

public StringBuilder append(char[] C);

Continues. . .

Figure 4.2, continued: The class StringBuilder, part 2.

4.4. READERS, WRITERS, STREAMS, AND FILES 53

/** Remove the characters at positions START..END-1 from this

* StringBuilder, moving the following characters over and

* decrementing the length appropriately. Return this. */

public StringBuilder delete(int start, int end);

/** Same as delete(k, k+1) */

public StringBuilder deleteCharAt(int k);

/** Same as delete(START, END).insert(START, X) */

public StringBuilder replace(int start, int end, String x);

/** Reverse the sequence of characters in this; return this. */

public StringBuilder reverse();

/** Causes charAt(K) to be C. Exception if charAt(K) would cause

* an exception */

public void setCharAt(int k, char c);

/** Causes length() to be LEN. If len0 is the previous length,

* then charAt(k) is unchanged for 0 <= k < len0, and

* charAt(k)==0 for len0 <= k < LEN. */

public void setLength(int len);

}

Figure 4.2, continued: The class StringBuilder, part 3.

taken a different approach to the problem. The result is that the current library
contains all the solutions of its prior versions, leading to quite a bit of redundancy
and confusion. We’ll try to sort this out by picking and choosing our topics and
concentrating on how to do useful things.

4.4.1 Input

The classes handling input in Java are loosely organized as follows:

• The abstract class java.io.InputStream represents a stream of bytes.

• A large number of concrete classes implement InputStream. In particu-
lar, these include java.io.FileInputStream, which produces the contents
of a file as a stream of bytes. The standard input (which by default is the
stream of data you type at the terminal) is presented to your program as an
InputStream (called System.in), although the language is silent as to which
concrete implementation it is.

• The abstract class java.io.Reader represents a stream of chars.

• There are large number of concrete implementations of Reader, including:

java.io.InputStreamReader takes an InputStream and presents it as a
Reader.

java.io.StringReader takes a String and presents its characters as a Reader.

54 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

java.io.BufferedReader is an implementation of Reader that takes any
kind of Reader and makes it into a more efficient one by reading large
segments at a time.

java.util.Scanner is a class that takes a Reader or an InputStream and
delivers its characters clumped into useful tokens (see §4.6).

For example, a program that reads words from the standard input might set things
up as follows:

import java.io.*;

import java.util.Scanner;

class WordReader {

public static void main (String[] args) {

Scanner input = new Scanner (System.in);

processWords (input);

}

...

after which, the next method in input will deliver words from the input, one at a
time, as described in §4.6.

Sometimes, you’ll instead want to fetch the input from a named file. For exam-
ple, you might want to run your program like this:

java DoMyTaxes tax-2004.dat

and have it mean that your program is to read its input from the file named
tax-2004.dat. To get this effect, you could write:

import java.io.*;

import java.util.Scanner;

public class DoMyTaxes {

public static void main (String[] args) {

try {

Scanner input = new Scanner (new FileInputStream (args[0]));

processTaxes (input);

} catch (FileNotFoundException e) {

System.err.println ("Could not open file " + args[0]);

System.exit (1);

}

}

...

Many programs allow you to take input either way, so that plain

java DoMyTaxes

reads input from the terminal. For this, we put the two cases above together:

4.4. READERS, WRITERS, STREAMS, AND FILES 55

import java.io.*;

import java.util.Scanner;

public class DoMyTaxes {

public static void main (String[] args) {

try {

Scanner input;

if (args.length == 0)

input = new Scanner (System.in);

else

input = new Scanner (new FileInputStream (args[0]));

processTaxes (input);

} catch (FileNotFoundException e) {

System.err.println ("Could not open file " + args[0]);

System.exit (1);

}

}

...

Finally, some programs allow you the option of putting the input directly onto
the command line, so that args[0] isn’t just the name of the input; it is is the
input:

import java.io.*;

import java.util.Scanner;

public class DoCommands {

public static void main (String[] args) {

Scanner input = new Scanner (new StringReader (args[0]));

processCommands (input);

}

...

4.4.2 Readers and InputStreams

The classes Reader and InputStream are abstract. They do not, in and of them-
selves, define any particular source of input. In the examples above, think of
FileInputStream and StringReader as types of vacuum cleaners. A Scanner

is an attachment that one can place on either of these. The types Reader and
InputStream are like standard nozzle shapes: you can attach a Scanner to any
kind of nozzle that conforms to Reader or InputStream.

Thus, InputStream describes a family of classes that support the following meth-
ods (among others):

read() Return the next byte of input (as an int in the range 0–255) or -1 if at the
end.

56 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

read(b, k, len) where b is an array of bytes, reads at most len bytes into b[k],
b[k+1], ... and returns the number read. This method is here for efficiency;
it is often faster to read many bytes at once.

close() shuts down the stream. Such an operation is often necessary to tell the
system when input is no longer needed, since it may otherwise have to consume
time or space keeping input available.

mark(n) and reset() respectively make a note of the program’s current place in
the input and “rewind” the input to the last mark (assuming that no more than
n characters have been read since). Depending on the kind of InputStream,
they do not always work. So. . .

markSupported() is true iff an InputStream allows marking.

The Reader class is almost the same, but deals in chars rather than bytes.

It might occur to you that it would probably be rather clumsy to have to write
your program using just read. Quite true: you will normally attach something
more useful (typically a Scanner in this class) to your Readers or InputStreams,
rather than using them directly. On the other hand, you do have to be familiar
with these classes if you wish to create a new kind of input source and want it
to be “plug-to-plug compatible” with existing classes that attach to Readers and
InputStreams.

4.4.3 Output

The classes handling output in Java are roughly analogous to those for input, but
with data going in the “opposite direction:”

• The abstract class java.io.OutputStream absorbs a stream of bytes.

• Numerous concrete classes implement OutputStream, notably:

java.io.FileOutputStream writes its stream of bytes into a file.

java.io.BufferedOutputStream collects its stream of bytes and feeds it to
another OutputStream in chunks, for efficiency.

java.io.PrintStream adds methods to OutputStream that make it easy to
write things such as strings and numbers in their printed forms. The
standard output and standard error output streams of a program are both
PrintStreams. Generally, PrintStreams are set up to send their streams
of bytes to another OutputStream (such as a FileOutputStream).

• The abstract class java.io.Writer absorbs a stream of chars.

• Concrete implementations of Writer include:

java.io.OutputStreamWriter converts its stream of chars that it receives
into a stream of bytes and gives it to an OutputStream.

4.5. REGULAR EXPRESSIONS AND THE PATTERN CLASS 57

java.io.StringWriter collects its stream of chars into a String that you
can extract at any time with toString.

java.io.BufferedWriter is analogous to BufferedOutputStream, but con-
nects to another Writer and deals in chars.

java.io.PrintWriter is analogous to PrintStream.

4.4.4 PrintStreams and PrintWriters

Especially when creating output intended for human consumption, writing things
one character at a time is rather clumsy. The PrintStream and PrintWriter

classes in java.io are intended to make this more convenient. Both of these have
a set of print and println methods that convert their argument to a String and
then write its characters. In println method, furthermore, additionally appends
an end-of-line sequence, so that the next output starts on a new line. Together
with String concatenation (‘+’), they allow you to write just about anything. For
example:

System.out.println ("Average of " + N + " inputs: " + mean

+ ", standard deviation: " + sigma);

With Java 2, version 1.5, you have the alternative of using the powerful format
methods as well:

System.out.format ("Average of %d inputs: %.2f, standard deviation: %.2f%n",

N, mean, sigma);

which has the same effect as

System.out.print

(String.format ("Average of %d inputs: %.2f, standard deviation: %.2f%n",

N, mean, sigma));

4.5 Regular Expressions and the Pattern Class

So far, all the means we’ve seen for breaking up a string or other stream of characters
have been quite primitive, which can lead to some rather involved programs to do
simple things. Consider the problem of interpreting the command-line arguments
to a program. A certain program might allow the following parameters

--output-file=FILE --output=FILE
--verbose

--charset=unicode --charset=ascii

--mode=N

where FILE is any non-empty sequence of characters and N is an integer. That is,
a user might start this program with commands like

58 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

java MyProgram --output-file=result.txt --charset=unicode

java MyProgram --verbose

Suppose we want to write a function to test whether a given string has one of these
formats. Here’s a brute-force approach:

/** Return true iff OPTION is a valid command argument. */

public static boolean validArgument (String arg) {

return (arg.startsWith ("--output-file=") && arg.length () > 14)

|| (arg.startsWith ("--output=") && arg.length () > 9)

|| arg.equals ("--verbose")

|| arg.equals ("--charset=unicode")

|| arg.equals ("--charset=ascii")

|| (arg.startsWith ("--mode=") && isInteger (arg));

}

static boolean isInteger (String numeral) {

for (int i = 0; i < numeral.length (); i += 1)

if (! Character.isDigit (numeral.charAt (i)))

return false;

return true;

}

Clearly, it would be nice not to have to write so much. In fact, we can write the
body of validArgument much more succinctly like this:

final static String argumentPattern =

"--output(-file)?=.+|--verbose|--charset=(unicode|ascii)"

+ "|--mode=\\d+";

public static boolean validArgument (String arg) {

return (arg.matches (argumentPattern));

}

(Here, we used a separate constant declaration for the pattern string and used
‘+’ to break it across lines for better readability. We could have dispensed with
the definition of argumentPattern and simply written the pattern string into the
return statement.)

Here, matches method on Strings treats argumentPattern as a regular expres-
sion, which is a description of a set of strings. To match a regular expression is to
be a member of this set.

In the package java.util.regex, Java provides classes Pattern and Matcher,
which provide, respectively, a highly augmented version of regular expression, and a
kind of engine for matching strings to them. Although the term “regular expression”
is often used to describe things like Pattern, it is misleading. Formal language the-
ory introduced regular expressions long ago, in a form that is much more restricted
than Java’s. Since the term has been appropriated, we’ll use words like “pattern”

4.5. REGULAR EXPRESSIONS AND THE PATTERN CLASS 59

(or “Pattern”), or “regexp” instead. For a complete description of Java patterns,
see the documentation for the classes Pattern and Matcher For now, we’ll just
look at some of the most common constructs, summarized in Table 4.4.

The most basic regular expressions contain no special characters, and denote
simply a literal match. For example, the two expressions

s.equals ("--verbose") s.matches ("--verbose")

have the same value. In set language, we say that the regular expression --verbose

denotes the set containing the single string "--verbose".
Other forms of regular expression exist to create sets that contain more than

one string. For example, to see if a one-character string, s, consists of a single vowel
(other than ‘y’), you could write either

s.matches ("a|e|i|o|u") or s.matches ("[aeiou]")

while to check for a (lower-case) consonant, you’ll need

s.matches ("[b-df-hj-np-tv-z]")

To test for a word starting with single consonant followed by one or more vowels,
you would write

s.matches ("[b-df-hj-np-tv-z][aeiou]+")

Finally, to check that s consists of a series of zero or more such words, each one
followed by any amount of whitespace, you could write

s.matches ("([b-df-hj-np-tv-z][aeiou]+\\s+)*")

Here, I had to write two backslashes to create a ‘\s’ because in Java string literals,
a single backslash is written as a double backslash.

So far, I have been writing strings and calling them regular expressions. The
whole truth is somewhat more complicated. The Java library defines two classes:
Pattern and Matcher, both of which are in the package java.util.regex. The
relationship is suggested in the following program fragment:

/* String representing a regular expression */

String R = "[b-df-hj-np-tv-z][aeiou]+";

String s = "To be or not to be";

/* A Pattern representing the same regular expression */

Pattern P = Pattern.compile (R);

/* An object that represents the places where P matches s or

parts of it. */

Matcher M = P.matcher (s);

if (M.matches ())

System.out.format ("P matches all of ’%s’%n", s);

if (M.lookingAt ())

System.out.format ("P matches the beginning of ’%s’%n", s);

60 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

Regular Matches

Expression

x x, if x is any character not described below
[c1c2 · · ·] Any one of the characters c1, c2, Any of the ci

may also have the form x-y, meaning “any single
character ≥ x and ≤ y.”

[^c1c2 · · ·] Any single character other than c1, c2, Here,
too, you can use x-y as short for all characters
≥ x and ≤ y.

. Any character except (normally) line terminators
(newline characters or other character sequences
that mark the end of a line).

\s Any whitespace character (blank, tab, newline,
etc.).

\S Any non-whitespace character.
\d Any digit.

^ Matches zero characters, but only at the beginning
of a line or string.

$ Matches zero characters, but only at the end of a
line or string.

(R) Matches the same thing as R. Parentheses serve as
grouping operators, just as they do in arithmetic
expressions.

R* Any string that can be broken into zero or more
pieces, each of which matches R. This is called the
closure of R.

R+ Same as RR∗. That is, it matches any string that
can be broken into one or more pieces, each of
which matches R.

R0R1 Any string that consists of something that
matches R0 immediately followed by something
that matches R1.

R0|R1 Any string that matches either R0 or R1.

Table 4.4: Common regular expressions. Lower-case italic letters denote single
characters. R, R0, R1, etc. are regular expressions (the definitions are recursive).
As with arithmetic expressions, operators have precedences, and are listed here
in decreasing order of precedence. Thus, ‘ab|xy*’ matches the same strings as
‘(ab)|(x(y*))’ rather than ‘a(b|x)(y*)’ or ‘((ab)|(xy))*’.

4.5. REGULAR EXPRESSIONS AND THE PATTERN CLASS 61

if (M.find ())

/* M.group () is the piece of s that was matched by the last

matches, lookingAt, or find on M. */

System.out.format ("P first matches ’%s’ in ’%s’%n", M.group (), s);

if (M.find ())

System.out.format ("P next matches ’%s’ in ’%s’%n", M.group (), s);

if (M.find ())

System.out.format ("P next matches ’%s’ in ’%s’%n", M.group (), s);

which, for the given value of s, would print:

P first matches ’be’ in ’To be or not to be’

P next matches ’no’ in ’To be or not to be’

P next matches ’to’ in ’To be or not to be’

A Pattern is a “compiled” regular expression, and a Matcher is something that
finds matches for a given Pattern inside a given String. The reason for wanting
to compile a regular expression into a Pattern is mostly one of efficiency: it takes
time to interpret the language of regular expressions and to convert it into a form
that is easy to apply quickly to a string. The reason to have a Matcher class (rather
than just writing something like P.find (s) is that you will often want to look for
multiple matches for a pattern in s, and to see just what part of s was matched.
Therefore, you need something that keeps track of both a regular expression, a
string, and the last match within that string. The expression we used previously,

s.matches ("([b-df-hj-np-tv-z][aeiou]+\\s+)*")

where s is a String, is equivalent to

Pattern.compile ("([b-df-hj-np-tv-z][aeiou]+\\s+)*").matcher (s).matches ()

We can use complex regular expressions to do some limited parsing—breaking
a string into parts. For example, suppose that we want to divide a time and date
in the form “mm/dd/yy hh:mm:ss” (as in “3/7/02 12:36:12”) into its constituent
parts. The means to do so is illustrated here:

Pattern daytime = Pattern.compile ("(\\d+)/(\\d+)/(\\d+)\s+(\\d+):(\\d+):(\\d+)");

Matcher m = daytime.matcher ("It is now 3/7/02 12:36:12.");

if (m.find ()) {

System.out.println ("Year: " + m.group(3));

System.out.println ("Month: " + m.group(1));

System.out.println ("Day: " + m.group(2));

System.out.println ("Hour: " + m.group(4));

System.out.println ("Minute: " + m.group(5));

System.out.println ("Second: " + m.group(6));

}

62 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

That is, after any kind of matching operation (in this case, find), m.group(n) re-

turns whatever was matched by the regular expression in the nth pair of parentheses
(counting from 1), or null if nothing matched that group.

Regular expressions and Matchers provide many more features than we have
room for here. For example, you can control much more closely how many repe-
titions of a subpattern match a given string. You can not only find matches for
patterns, but also conveniently replace those matches with substitute strings. The
intent of this section was merely to suggest what you’ll find in the on-line documen-
tation for the Java library.

4.6 Scanner

One application for text pattern matchers is in reading text input. A Scanner,
found in package java.util, is a kind of all-purpose input reader, similar to a
Matcher. In effect, you attach a Scanner to a source of characters—which can be
a file, the standard input stream, or a string, among other things—and it acts as a
kind of “nozzle” that spits out chunks of the stream as Strings. You get to select
what constitutes a “chunk.” For example, suppose that the standard input consists
of words alternating with integers, like this:

axolotl 12 aardvark 50

bison

16

cougar 6

panther 2 gazelle 100

and you want to read in these data and, let’s say, print them out in a standard
form and find the total number of animals. Here’s one way you might do so, using
a default Scanner:

4.6. SCANNER 63

import java.util.*;

class Wildlife {

public static void main (String[] args) {

int total;

Scanner input = new Scanner (System.in);

total = 0;

while (input.hasNext ()) {

String animal = input.next ();

int count = input.nextInt ();

total += count;

System.out.format ("%-15s %4d%n", animal, count);

}

System.out.format ("%-15s %4d%n", "Total", total);

}

}

This program first creates a Scanner out of the standard input (System.in). Each
call to the next first skips any delimiter that happens to be there, and then returns
the next token from the input: all characters up to and not including the next
delimiter or the end of the input. Each call to nextInt is the same, but converts
its token into an int first (and causes an error if the next token is not an int).
Finally, hasNext returns true iff there is another token before the end of the input.
For the given input, the program above prints

axolotl 12

aardvark 50

bison 16

cougar 6

panther 2

gazelle 100

Total 186

By default, the delimiter used is “any span of whitespace,” which is defined
as one or more characters for which the method Character.isWhitespace returns
true. You can change this. For example, to allow comments in the input file above,
like this:

Counts from sector #17

axolotl 12 aardvark 50

bison

16

cougar 6 # NOTE: count uncertain

panther 2 gazelle 100

insert the following line immediately after the definition of input:

64 CHAPTER 4. STRINGS, STREAMS, AND PATTERNS

input.useDelimiter (Pattern.compile ("(\\s|\#.*)+"));

Just as with a Matcher, you can set a Scanner loose looking for a token that
matches a particular pattern (rather than looking for whitespace that matches).
So, for example, to skip to the next point in the input file that reads “Chapter N ,”
where N is an integer, you could write

if (input.findWithinHorizon ("Chapter \\d+", 0) != null) {

/* What to do if you find a new chapter */

}

The second argument limits the number of characters searched; 0 means that there
is no limit. This method returns the next match to the pattern string, or null if
there is none.

Again, this section merely suggests what Scanners can do. The on-line docu-
mentation for the Java library contains the details.

Chapter 5

Generic Programming

Inheritance gives us one way to re-use the contents of a class, method, or interface
by allowing it to mold itself to a variety of different kinds of objects having similar
properties. However, it doesn’t give us everything we might want.

For example, the Java library has a selection of useful classes that, like arrays,
represent indexed sequences of values, but are expandable (unlike an array), and
provide, in addition, a variety of useful methods. They are all various implementa-
tions of the interface List. One of these classes is ArrayList, which you might use
as shown in the example here. Suppose we have a class called Person, designed to
hold information such as name, Social-Security Number, and salary:

public class Person {

public Person (String name, String SSN, double salary) {

this.name = name; this.SSN = SSN; this.salary = salary;

}

public double salary;

public String name, SSN;

}

We can create a list of Persons using a program along the following lines:

ArrayList people = new ArrayList ();

while (/*(there are more people to add)*/) {

Person p = /*(the next person)*/;

people.add (p);

}

That is, .add expands the list people by one object (which goes on the end). Then
we could compute the total payroll like this:

double total;

total = 0.0;

for (int i = 0; i < people.size (); i += 1) {

total += ((Person) people.get (i)).salary;

}

65

66 CHAPTER 5. GENERIC PROGRAMMING

That is, people.get(i) is sort of like A[i] on arrays. But there’s an odd awkward-
ness here: if people were an array, we’d write people[i].salary. What’s with
the (Person) in front? It is an example of a cast, a conversion, which we’ve seen in
other contexts. For reference types, a cast (C) E means “I assert that the value
of E is a C, and if it isn’t, throw an exception.”

To understand why we need this cast, we have to look at the definition of
ArrayList, which (effectively) contains definitions like this1:

public class ArrayList implements List {

/** The number of elements in THIS. */

public int size () { ... }

/** The Ith element of THIS. */

public Object get (int i) { ... }

/** Append X as the last element in THIS. (Always returns true). */

public boolean add (Object x) { ... }

...

In order to make the class work on all kinds of objects, the type returned by get

and taken by add is Object, the supertype of all reference types. Unfortunately,
the Java compiler insists on knowing, for an expression such as someone.salary,
that someone is actually going to have a salary. If all it knows is that people.get
(i) is an Object, then it has no idea whether it is a kind of Object with a salary.
Hence the need for the cast to Person. When you write

((Person) people.get (i)).salary

you are saying “I claim that the result of people.get (i) is a Person” and as a
result, the Java system will check that the value returned by get really is a Person

before attempting to take its salary. Furthermore, the compiler will proceed under
the assumption that the value is a Person, and so must indeed have a salary field.

5.1 Simple Type Parameters

From your point of view, supplying this extra cast to Person, while not terribly
burdensome, is redundant, adds to “code clutter,” and also delays the detection
of certain mistakes until the program executes. The only obvious way around it
is unsatisfactory: creating new versions of ArrayList for every possible kind of
element. Inheritance is no help, as it does not change the signatures (argument and
return types) of methods. With Java 2, version 1.5, however, there is a way to say
what you mean here—that people is a list of Persons—using generic programming:

1The return value of add indicates whether the operation changed the list, and is therefore
useless in lists, where the add operation always changes the list. It’s there because List is just one
subtype of an even larger family of types in which the add method sometimes does not change the
target object.

5.1. SIMPLE TYPE PARAMETERS 67

ArrayList<Person> people = new ArrayList<Person> ();

while (/*(there are more people to add)*/) {

Person p = /*(the next person)*/;

people.add (p);

}

...

double total;

total = 0.0;

for (int i = 0; i < people.size (); i += 1) {

total += people.get (i).salary;

}

To make this work, the definition of ArrayList actually reads:

public class ArrayList<Item> implements List<Item> {

/** The number of elements in THIS. */

public int size () { ... }

/** The Ith element of THIS. */

public Item get (int i) { ... }

/** Append X as the last element in THIS. (Always returns true). */

public boolean add (Item x) { ... }

...

}

The identifier Item here is a type variable, meaning that it ranges over reference
types (interfaces, classes, and array types). The clause “class ArrayList<Item>”
declares Item as a formal type parameter to the class ArrayList. Finally, ArrayList<Person>
is a parameterized type in which Person is an actual type parameter. As you can
see, you can use ArrayList<Person> just as you would an ordinary type—in dec-
larations, implements or extends clauses, and with new, for example.

As another example, the Java library also defines the type java.util.HashMap,
one of a variety of classes implementing java.util.Map, which is intended as a kind
of dictionary type. Here is an example in which we take our array of Persons from
above and arrange to be able to retrieve any Person record by name:

Map<String, Person> dataBase = new HashMap<String, Person> ();

for (int i = 0; i < people.size (); i += 1) {

Person someone = people.get (i);

dataBase.put (someone.name, someone);

}

Having set up dataBase in this fashion, we can now write little programs like this
to retrieve employee records:

68 CHAPTER 5. GENERIC PROGRAMMING

/** Read name queries from INPUT and respond by printing associated

* information from DATA. Each query is a name (a string). The

* end of INPUT or a single period (.) signals the end. */

public static void doQueries (Scanner input, Map<String, Person> data)

{

while (input.hasNext ()) {

String name = input.next ();

if (name.equals ("."))

break;

Person info = data.get (name);

System.out.format ("Name: %s, SSN: %s, salary: $%6.2f%n",

name, info.SSN, info.salary);

}

}

The definition of HashMap needed to get this effect might look like this2:

public class HashMap<Key, Value> implements Map<Key, Value> {

...

/** The value mapped to by K, or null if there is none. */

public Value get (Object k) { ... }

/** Cause get(K) to become V, returning the previous value of

* get(K). Values for all other keys are unchanged. */

public Value put (Key k, Value v) { ... }

}

The difference from the ArrayList example is that we have more than one type
parameter.

5.2 Type Parameters on Methods

Suppose that you’d like to generalize the following method:

/** Set all the items in A to X. */

public void set (String[] A, String x)

{

for (int i = 0; i < A.length; i += 1)

A[i] = x;

}

This works for arrays of Strings, but nothing else. The rules of Java allow you to
write

2You might wonder why the argument to get can be any Object. Since the argument to put,
which is what allows you to add things to the map, is Key, get(x) will return null whenever x does
not have type Key. This is harmless, however, and the designers, I guess, decided to be lenient.

5.3. RESTRICTING TYPE PARAMETERS 69

/** Set all the items in A to X. */

public static void set2 (Object[] A, Object x)

{

for (int i = 0; i < A.length; i += 1)

A[i] = x;

}

because all arrays are subtypes of Object[]. However you won’t find out until
execution time if you have supplied an argument for x that doesn’t have a matching
type. With type parameters, however, you can write

/** Set all the items in A to X. */

public static <AType> void set3 (AType[] A, AType x)

{

for (int i = 0; i < A.length; i += 1)

A[i] = x;

}

Here AType is a formal type parameter of the method , which you can now call with
any kind of array. The compiler will insure that you have supplied the right kind
of value for x.

5.3 Restricting Type Parameters

The useful class java.util.Collections contains a number of methods that work
on lists, among them one for sorting a list. With what you saw in the last section,
you might think that this would suffice to sort any kind of list:

public static <T> void sort(List<T> list) {

...

}

Unfortunately, not quite. In order to sort anything, you have to know what it means
for one item to be less than another, and there is no general method for determining
such a thing. That is, somewhere in the body of sort, there will presumably have
to be some statement like

if (list.get (i).lessThan (list.get (j))) etc.

but there is no such general lessThan method that works on all types.
By convention, Java classes can define an ordering upon themselves by imple-

menting the java.lang.Comparable interface, which looks like this:

public interface Comparable<T> {

/** Returns a value < 0 if THIS is ‘‘less than’’ Y, > 0 if THIS is

* greater than Y, and 0 if equal. */

int compareTo(T y);

}

70 CHAPTER 5. GENERIC PROGRAMMING

So we really want to say that sort accepts a type parameter T, but only if T

implements the Comparable interface. Here’s one way to write it:

public static <T extends Comparable<T>> void sort(List<T> list) {

...

}

we call the “extends Comparable<T>” clause a type bound.

5.4 Wildcards

Sometimes, it really doesn’t matter what kinds of items are stored in your List.
For example, because toString is a method that works on all objects, if you want
a method to print them all in a numbered list,

public static <T> void printAll (List<T> list) {

for (int n = 1; n <= list.size (); i += 1)

System.out.println (n + ". " + list.get (i));

}

(The ‘+’ operation on Strings allows you to concatenate any Object to a String;
it does so by calling the toString on that Object.) However, you never really use
the name T for anything. Therefore, you can use this shorthand instead:

public static void printAll (List<?> list) {

for (int n = 1; n <= list.size (); i += 1)

System.out.println (n + ". " + list.get (i));

}

You can restrict this wildcard type variable, just as you can named type variables:

public static void printAllNames (List<? extends Person> list) {

for (int n = 1; n <= list.size (); i += 1)

System.out.println (n + ". " + list.get (i).name);

}

5.5 Generic Programming and Primitive Types

One possibly unfortunate characteristic of Java is that primitive types (boolean,
long, int, short, byte, char, float, and double) are completely distinct from
reference types. Everything other than a primitive value is an Object (that is, all
reference types are subtypes of Object).

Alas, all the examples of useful classes from the Java library that we’ve seen deal
with Objects: you can have lists of Objects and maps from Objects to Objects,
but you can’t use the same classes to get lists of ints. The language is not set up
to provide such a thing without essentially copying of these classes from the library

5.5. GENERIC PROGRAMMING AND PRIMITIVE TYPES 71

and making changes to them by hand—one for each primitive type. The designers
thought this was not a great idea and came up with a compromise instead.

Package java.lang of the Java library contains a set of wrapper classes in
java.lang corresponding to each of the primitive types:

Primitive =⇒ Wrapper Primitive =⇒ Wrapper

long =⇒ Long char =⇒ Character

int =⇒ Integer boolean =⇒ Boolean

short =⇒ Short float =⇒ Float

byte =⇒ Byte double =⇒ Double

The wrapper classes turned out to be a convenient dumping ground for a variety
of static methods and constants associated with the primitive types. For example,
there are constants MAX_VALUE and MIN_VALUE defined in the wrappers for numeric
types, so that Integer.MAX VALUE is the largest possible int value. There are also
methods for parsing String values containing numeric literals back and forth to
primitive types.

The original reason for introducing these classes, however, was so that their
instances could contain a value of the corresponding primitive type (commonly
called wrapping or boxing the value.) That is,

Integer I = new Integer (42);

int i = I.intValue (); // i now has the value 42.

There is no way to change the intValue of a given Integer object once it is created;
Integers are immutable just like primitive values. Since Integer is a reference type,
however, we can store its instances in an ArrayList, for example:

/** A list of the prime numbers between L and U. */

public List<Integer> primes (int L, int U)

{

ArrayList<Integer> primes = new ArrayList<Integer>;

for (int x = L; x < U; x += 1)

if (isPrime (x))

primes.add (new Integer (x));

return primes;

}

These wrappers let us use the library classes for primitive types, but the syntax
is clumsy, especially if we want to perform primitive operations such as arithmetic:

/** Add X to each item in L. */

public void increment (List<Integer> L, int x)

{

for (int i = 0; i < L.size (); i += 1)

L.set (i, new Integer (L.get (i).intValue () + x));

}

72 CHAPTER 5. GENERIC PROGRAMMING

So in version 1.5 of Java 2, the designers introduced automatic boxing and unboxing
of primitive values. Basically, the idea is that a primitive value will be implicitly
converted (coerced) to a corresponding wrapper value when needed, and vice-versa.
For example:

Integer x = 42; // is equivalent to Integer x = new Integer (42)

int y = x; // is equivalent to int y = x.intValue ();

Now we can write

/** Add X to each item in L. */

public void increment (List<Integer> L, int x)

{

for (int i = 0; i < L.size (); i += 1)

L.set (i, L.get (i) + x);

}

So now it at least looks like we can write classes that deal with all types of value,
primitive and reference. Nothing, alas, is free. The boxing coercion especially uses
up both space and time. For large and intensively used collections of values, it may
still be necessary to tune one’s program by building specialized versions of such
general-purpose classes.

5.6 Caveats

Let’s face it, inheritance and type parameterization in Java are both complicated.
I’ve tried to finesse some of the complexity (for example, there are still a number
of generic-programming features that I haven’t discussed at all.) Here are a few
particular pitfalls it might be helpful to beware of.

Type hierarchy. A very common mistake is to think that, for example, because
String is a subtype of Object, that therefore ArrayList<String> must be a sub-
type of ArrayList<Object>. In fact, this is not the case. Actually, it’s not difficult
to see why. In Java, if C is a subtype of P , then anything you can do to a P you
can also do to a C. If L is an ArrayList<Object>, then you can write

Person someone = ...;

L.add (someone);

But clearly, you cannot do that to an ArrayList<String>; therefore you’d bet-
ter not be allowed to have L point to an ArrayList<String>, which means that
ArrayList<String> had better not be a subtype of ArrayList<Object> (nor vice-
versa).

5.6. CAVEATS 73

Consequences of the implementation. You might be tempted to think that
ArrayList<Person> is a just new copy of ArrayList with Person substituted for
Item throughout. For a number of reasons, partly historical3, it’s really just a plain
ArrayLists under the hood and all varieties of ArrayList<T> for all T actually
run exactly the same code. During translation, however, the compiler enforces the
extra requirement that an ArrayList<Person> may only contain Persons. There
are a couple of noticeable consequences of this design that are frankly annoying. If
T is a type parameter, then

• You cannot use new T . For example, inside the definition of ArrayList, you
can’t write “new Item[...].”

• You cannot write X instanceof T .

• You cannot use T as the type of a static field.

[Advanced Question: See if you can figure out why these restrictions might exist.]
The restriction against using a type parameter in a new is bothersome. Suppose

you’d like to write:

class MyThing<T> {

private T[] stuff;

MyThing (int N) {

stuff = new T[N];

}

T get (int i) { return stuff[i]; }

}

It makes perfect sense, but doesn’t work, because you’re not allowed to use T with
new. Instead, write the following:

MyThing (int N) {

stuff = (T[]) new Object[N];

}

This is a terrible kludge, really, justified only by necessity. Your author feels dirty
just mentioning it. The code above would not work, for example, if you substituted
a real type, like String for the type variable T; at execution time, you would get an
error on the conversion to String[], because an array of Object is not an array of
String. The code above works only because the Java compiler “really” substitutes
Object for T inside the body of MyThing, and then inserts additional conversions
where needed. Perhaps it is advisable for the time being not to think about this
unfortunate glitch too much and hope the designers eventually come up with a
better solution!

3These generic programming features were designed under stringent constraints. Backward com-
patibility, in particular, was an important goal. Old versions of ArrayList and other functions in
the Java library had no parameters, and Java’s designers did not want to have to force programmers
to rewrite all their existing Java programs.

74 CHAPTER 5. GENERIC PROGRAMMING

Chapter 6

Multiple Threads of Control

Sometimes, we need programs that behave like several separate programs, running
simultaneously and occasionally communicating. Familiar examples come from the
world of graphical user interfaces (GUIs) where we have, for example, a chess pro-
gram in which one part that “thinks” about its move while another part waits for its
user to resize the board or push the “Resign” button. In Java, such miniprograms-
within-programs are called threads. The term is short for “thread of control.” Java
provides a means of creating threads and indicating what code they are to execute,
and a means for threads to communicate data to each other without causing the
sort of chaos that would result from multiple programs attempting to make modi-
fications to the same variables simultaneously. The use of more than one thread in
a program is often called multi-threading; however, we also use the terms concur-
rent programming, and parallel programming, especially when there are multiple
processors each of which can be dedicated to running a thread.

Java programs may be executed on machines with multiple processors, in which
case two active threads may actually execute instructions simultaneously. However,
the language makes no guarantees about this. That’s a good thing, since it would
be a rather hard effect to create on a machine with only one processor (as most
have). The Java language specification also countenances implementations of Java
that

• Allow one thread to execute until it wants to stop, and only then choose
another to execute, or

• Allow one thread to execute for a certain period of time and then give another
thread a turn (time-slicing), or

• Repeatedly execute one instruction from each thread in turn (interleaving).

This ambiguity suggests that threads are not intended simply as a way to get paral-
lelism. In fact, the thread is a useful program structuring tool that allows sequences
of related instructions to be written together as a single, coherent unit, even when
they can’t actually be executed that way.

75

76 CHAPTER 6. MULTIPLE THREADS OF CONTROL

package java.lang;

public interface Runnable {

/** Execute the body of a thread. */

void run();

}

public class Thread implements Runnable {

/** Minimum, maximum, and default thread priorities. */

public static final int

MIN_PRIORITY, NORM_PRIORITY, MAX_PRIORITY;

/** A new Thread with name NAME that will run

* the code in BODY.run() when started. */

public Thread(Runnable body, String name);

/** Same as Thread (BODY, some generated name) */

public Thread(Runnable body);

/** Same as Thread (null, NAME) */

public Thread(String name);

/** Same as Thread (this, some generated name) [that is,

* the Thread supplies its own run() routine.] */

public Thread();

/** Begin independent execution of the body of this

* Thread. Throws exception if this Thread has already

* started. */

public void start();

/** Inherited from Runnable. If this Thread provides

* its own body, this executes it. */

public void run();

/** The Thread that is executing the caller. */

public static native Thread currentThread();

/** Fetch (set) the name of this Thread. */

public final String getName();

public final void setName(String newName);

/** The (set) the current priority of this Thread. */

public final int getPriority();

public final void setPriority(int newPriority);

Continued on page 77.

Figure 6.1: The interface java.lang.Runnable and class java.lang.Thread. See
also §6.1.

77

Class Thread continued from page 76.

/** Current interrupt state of this Thread. */

public boolean isInterrupted();

/** Causes this.isInterrupted() to become true. */

public void interrupt();

/** Resets this.isInterrupted() to false, and returns its

* prior value. */

public static boolean interrupted();

/** Causes CURRENT to wait until CURRENT.isInterrupted()

* or this thread terminates, or 10−3 · MILLIS+ 10−9 · NANOS
* seconds have passed. */

public final void join(long millis, int nanos)

throws InterruptedException;

/** Same as join (MILLIS, 0); join(0) waits forever. */

public final void join(long millis)

throws InterruptedException;

/** Same as join(0) */

public final void join() throws InterruptedException;

/** Causes CURRENT to wait until CURRENT.isInterrupted()

* or 10−3 · MILLIS+ 10−9 · NANOS seconds have passed. */

public static void sleep(long millis, int nanos)

throws InterruptedException;

/** Same as sleep(MILLIS, 0). */

public static void sleep(long millis)

throws InterruptedException;

}

Figure 6.2: Classjava.lang.Thread, continued.

78 CHAPTER 6. MULTIPLE THREADS OF CONTROL

6.1 Creating and Starting Threads

Java provides the built-in type Thread (in package java.lang) to allow a program
a way to create and control threads. Figures 6.1–6.2 describe this class and the
Runnable interface as the programmer sees them. In the figure, CURRENT refers to
the Thread executing the call, also called Thread.currentThread().

There are essentially two ways to use it to create a new thread. Suppose that
our main program discovers that it needs to have a certain task carried out—let’s
say washing the dishes—while it continues with its work—let’s say playing chess.
We can use either of the following two forms to bring this about:

class Dishwasher implements Runnable {

Fields needed for dishwashing.
public void run () { wash the dishes }

}

class MainProgram {

public static void main (String[] args) {

...

if (dishes are dirty) {

Dishwasher washInfo = new Dishwasher ();

Thread washer = new Thread (washInfo);

washer.start ();

}

play chess
}

}

Here, we first create a data object (washInfo) to contain all data needed for dish-
washing. It implements the standard interface java.lang.Runnable, which requires
defining a function run that describes a computation to be performed. We then cre-
ate a Thread object washer to give us a handle by which to control a new thread of
control, and tell it to use washInfo to tell it what this thread should execute. Call-
ing .start on this Thread starts the thread that it represents, and causes it to call
washInfo.run (). The main program now continues normally to play chess, while
thread washer does the dishes. When the run method called by washer returns,
the thread is terminated and (in this case) simply vanishes quietly.

In this example, I created two variables with which to name the Thread and
the data object from which the thread gets its marching orders. Actually, neither
variable is necessary; I could have written instead

if (dishes are dirty)
(new Thread (new Dishwasher ())).start ();

Java provides another way to express the same thing. Which you use depends
on taste and circumstance. Here’s the alternative formulation:

6.2. A QUESTION OF TERMINOLOGY 79

class Dishwasher extends Thread {

Fields needed for dishwashing.
public void run () { wash the dishes }

}

class MainProgram {

public static void main (String[] args) {

...

if (dishes are dirty) {

Thread washer = new Dishwasher ();

washer.start ();

// or just (new Dishwasher ()).start ();

}

play chess
}

}

Here, the data needed for dishwashing are folded into the Thread object (actually,
an extension of Thread) that represents the dishwashing thread.

When you execute a Java application (as opposed to an embedded Java program,
such as an applet), the system creates an anonymous main thread that simply calls
the appropriate main procedure. When the main procedure terminates, this main
thread terminates and the system then typically waits for any other threads you
have created to terminate as well.

6.2 A question of terminology

The fact that Java’s Thread class has the name it does may tempt you into making
the equation “thread = Thread.” Unfortunately, this is not correct. When I write
“thread” (uncapitalized in normal text font), I mean “thread of control”—an inde-
pendently executing instruction sequence. When I write “Thread” (capitalized in
typewriter font), I mean “a Java object of type java.lang.Thread.” The relation-
ship is that a Thread is an object visible to a program by which one can manipulate
a thread—a sort of handle on a thread. Each Thread object is associated with a
thread, which itself has no name, and which becomes active when some other thread
executes the start method of the Thread object.

A Thread object is otherwise just an ordinary Java object. The thread associated
with it has no special access to the associated Thread object. Consider a slight
extension of the Dishwasher class above:

80 CHAPTER 6. MULTIPLE THREADS OF CONTROL

class SelfstartingDishwasher extends Dishwasher {

SelfstartingDishwasher () {

start ();

}

}

class MainProgram {

public static void main (String[] args) {

...

if (dishes are dirty) {

Thread washer = new SelfstartingDishwasher ();

// actually, we could just use

// new SelfstartingDishwasher ();

// and get an anonymous dishwasher, since we don’t

// refer to ’washer’ again.

}

play chess
}

}

Initially, the anonymous main thread executes the code in MainProgram. The
main thread creates a Thread (actually a SelfstartingDishwasher), pointed to
by washer, and then executes the statements in its constructor. That’s right: the
main thread executes the code in the SelfstartingDishwasher constructor, just
as it would for any object. While executing this constructor, the main thread
executes start(), which is short for this.start(), with the value this being
that of washer. That activates the thread (lower case) associated with washer,
and that thread executes the run method for washer (inherited, in this case, from
Dishwasher). If we were to define additional procedures in SelfstartingDishwasher,
they could be executed either by the main thread or by the thread associated with
washer. The only magic about the type Thread is that among other things, it allows
you to start up a new thread; otherwise Threads are ordinary objects.

Just to cement these distinctions in your mind, I suggest that you examine the
following (rather perverse) program fragment, and make sure that you understand
why its effect is to print ‘true’ a number of times. It makes use of the static
(class) method Thread.currentThread, which returns the Thread associated with
the thread that calls it. Since Foo extends Thread, this method is inherited by Foo.

// Why does the following program print nothing but ‘true’?

class Foo extends Thread {

public void run () {

System.out.println (Main.mainThread != currentThread());

}

public void printStuff () {

Thread mainThr = Main.mainThread;

6.3. SYNCHRONIZATION 81

System.out.println (mainThr == Thread.currentThread ());

System.out.println (mainThr == Foo.currentThread ());

System.out.println (mainThr == this.currentThread ());

System.out.println (mainThr == currentThread ());

}

}

class Main {

static Thread mainThread;

public static void main (String[] args) {

mainThread = Thread.currentThread ();

Thread aFoo = new Foo ();

aFoo.start ();

System.out.println (mainThread == Foo.currentThread ());

System.out.println (mainThread == aFoo.currentThread ());

aFoo.printStuff ();

}

}

6.3 Synchronization

Two threads can communicate simply by setting variables that they both have
access to. This sounds simple, but it is fraught with peril. Consider the following
class, intended as a place for threads to leave String-valued messages for each other.

class Mailbox { // Version I. (Non-working)

volatile String msg;

Mailbox () { msg = null; }

void send (String msg0) {

msg = msg0;

}

String receive () {

String result = msg;

msg = null;

return result;

}

}

Here, I am assuming that there are, in general, several threads using a Mailbox to
send messages and several using it to receive, and that we don’t really care which
thread receives any given message as long as each message gets received by exactly
one thread.

82 CHAPTER 6. MULTIPLE THREADS OF CONTROL

This first solution has a number of problems:

1. If two threads call send with no intervening call to receive, one of their
messages will be lost (a write-write conflict).

2. If two threads call receive simultaneously, they can both get the same mes-
sage (one example of a read-write conflict because we wanted one of the
threads to write null into result before the other thread read it.

3. If there is no message, then receive will return null rather than a message.

Items (1) and (2) are both known as race conditions—so called because two threads
are racing to read or write a shared variable, and the result depends (unpredictably)
on which wins. We’d like instead for any thread that calls send to wait for any
existing message to be received first before preceding; likewise for any thread that
calls receive to wait for a message to be present; and in all cases for multiple
senders and receivers to wait their respective turns before proceeding.

6.3.1 Mutual exclusion

We could try the following re-writes of send and receive:

class Mailbox { Version II. (Still has problems)

volatile String msg;

Mailbox () { msg = null; }

void send (String msg0) {

while (msg != null)

; /* Do nothing */

msg = msg0;

}

String receive () {

while (msg == null)

; /* Do nothing */

String result = msg;

msg = null;

return result;

}

}

The while loops with empty bodies indulge in what is known as busy waiting. A
thread will not get by the loop in send until this.msg becomes null (as a result of
action by some other thread), indicating that no message is present. A thread will
not get by the loop in receive until this.msg becomes non-null, indicating that a
message is present. (For an explanation of the keyword volatile, see §6.3.3.)

6.3. SYNCHRONIZATION 83

Unfortunately, we still have a serious problem: it is still possible for two threads
to call send, simultaneously find this.msg to be null, and then both set it, losing
one message (similarly for receive). We want to make the section of code in each
procedure from testing this.msg for null through the assignment to this.msg to
be effectively atomic—that is, to be executed as an indivisible unit by each thread.

Java provides a construct that allows us to lock an object, and to set up regions
of code in which threads mutually exclude each other if operating on the same
object.

Syntax.

SynchronizeStatement:
synchronized (Expression) Block

The Expression must yield a non-null reference value.

Semantics. We can use this construct in the code above as follows:

class Mailbox { // Version III. (Starvation-prone)

String msg;

Mailbox () { msg = null; }

void send (String msg0) {

while (true)

synchronized (this) {

if (msg == null) {

msg = msg0;

return;

}

}

}

String receive () {

while (true)

synchronized (this) {

if (msg != null) {

String result = msg;

msg = null;

return result;

}

}

}

}

The two synchronized blocks above are said to lock the object referenced by their
argument, this.

When a given thread, call it t, executes the statement

84 CHAPTER 6. MULTIPLE THREADS OF CONTROL

synchronized (X) { S }

the effect is as follows:

• If some thread other than t has one or more locks on the object pointed to by
X, t stops executing until these locks are removed. t then places a lock on the
object pointed to by X (the usual terminology is that it acquires a lock on X).
It’s OK if t already has such a lock; it then gets another. These operations,
which together are known as acquiring a lock on (the object pointed to by) X
are carried out in such a way that only one thread can lock an object at a
time.

• S is executed.

• No matter how S exits—whether by return or break or exception or reaching
its last statement or whatever—the lock that was placed on the object is then
removed.

As a result, if every function that touches the object pointed to by X is careful
to synchronize on it first, only one thread at a time will modify that object, and
many of the problems alluded to earlier go away. We call S a critical region for
the object referenced by X. In our Mailbox example, putting accesses to the msg

field in critical regions guarantees that two threads can’t both read the msg field of
a Mailbox, find it null, and then both stick messages into it (one overwriting the
other).

We’re still not done, unfortunately. Java makes no guarantees about which of
several threads that are waiting to acquire a lock will ‘win’. In particular, one
cannot assume a first-come-first-served policy. For example, if one thread is looping
around in receive waiting for the msg field to become non-null, it can permanently
prevent another thread that is executing send from ever acquiring the lock! The
‘receiving’ thread can start executing its critical region, causing the ‘sending’ thread
to wait. The receiving thread can then release its lock, loop around, and re-acquire
its lock even though the sending thread was waiting for it. We say that the sender
can starve. There are various technical reasons for Java’s being so loose and chaotic
about who gets locks, which we won’t go into here. We need a way for a thread to
wait for something to happen without starving the very threads that could make it
happen, and without monopolizing the processor with useless thumb-twiddling.

6.3.2 Wait and notify

The solution is to use the routines wait, notify, and notifyAll to temporarily
remove locks until something interesting happens. These methods are defined on all
Objects. If thread T calls X.wait(), then T must have a lock on the object pointed
to by X (there is an exception thrown otherwise). The effect is that T temporarily
removes all locks it has on that object and then waits on X. (Confusingly, this
is not the same as waiting to acquire a lock on the object; that’s why I used the
phrase “stops executing” above instead.) Other threads can now acquire locks on

6.3. SYNCHRONIZATION 85

the object. If a thread that has a lock on X executes notifyAll, then all threads
waiting on X at that time stop waiting and each tries to re-acquire all its locks
on X and continue (as usual, only one succeeds; the rest continue to contend for a
lock on the object). The notify method is the same, but wakes up only one thread
(choosing arbitrarily). With these methods, we can re-code Mailbox as follows:

// Version IV. (Mostly working)

void send (String msg0) {

synchronized (this) {

while (msg != null)

try {

this.wait ();

} catch (InterruptedException e) { }

msg = msg0;

this.notifyAll ();

}

}

String receive () {

synchronized (this) {

while (this.msg == null)

try {

this.wait ();

} catch (InterruptedException e) { }

String result = msg;

this.notifyAll (); // Unorthodox placement. See below.

msg = null;

return result;

}

}

In the code above, the send method first locks the Mailbox and then checks to
see if all messages that were previously sent have been received yet. If there is
still an unreceived message, the thread releases its locks and waits. Some other
thread, calling receive, will pick up the message, and notify the would-be senders,
causing them to wake up. The senders cannot immediately acquire the lock since
the receiving thread has not left receive yet. Hence, the placement of notifyAll
in the receive method is not critical, and to make this point, I have put it in a
rather non-intuitive place (normally, I’d put it just before the return as a stylistic
matter). When the receiving thread leaves, the senders may again acquire their
locks. Because several senders may be waiting, all but one of them will typically
lose out; that’s why the wait statements are in a loop.

This pattern—a function whose body synchronizes on this—is so common that
there is a shorthand (whose meaning is nevertheless identical):

86 CHAPTER 6. MULTIPLE THREADS OF CONTROL

synchronized void send (String msg0) {

while (msg != null)

try {

this.wait ();

} catch (InterruptedException e) { }

msg = msg0;

this.notifyAll ();

}

synchronized String receive () {

while (this.msg == null)

try {

this.wait ();

} catch (InterruptedException e) { }

String result = msg;

this.notifyAll ();

msg = null;

return result;

}

There are still times when one wants to lock some arbitrary existing object (such as
a shared Vector of information), and the synchronized statement I showed first
is still useful.

It may have occurred to you that waking up all threads that are waiting only to
have most of them go back to waiting is a bit inefficient. This is true, and in fact,
so loose are Java’s rules about the order in which threads get control, that it is still
possible with our solution for one thread to be starved of any chance to get work
done, due to a constant stream of fellow sending or receiving threads. At least in
this case, some thread gets useful work done, so we have indeed improved matters.
A more elaborate solution, involving more objects, will fix the remaining starvation
possibility, but for our modest purposes, it is not likely to be a problem.

6.3.3 Volatile storage

You probably noticed the mysterious qualifier volatile in the busy-waiting example.
Without this qualifier on a field, a Java implementation is entitled to pretend that
no thread will change the contents of a field after another thread has read those
contents until that second thread has acquired or released a lock, or executed a
wait, notify, or notifyAll. For example, a Java implementation can treat the
following two pieces of code as identical, and translate the one on the left into the
one on the right:

tmp = X.z;

while (X.z < 100) { while (tmp < 100) {

6.4. INTERRUPTS 87

X.z += 1; tmp += 1;

} }

X.z = tmp;

But of course, the effects of these two pieces of code are not identical if another
thread is also modifying X.z at the same time. If we declare z to be volatile, on the
other hand, then Java must use the code on the left.

By default, fields are not considered volatile because it is potentially expensive
(that is, slow) not to be able to keep things in temporary variables (which may often
be fast registers). It’s not common in most programs, with the exception of what
I’ll call the shared, one-way flag idiom. Suppose that you have a simple variable
of some type other than long or double1 and that some threads only read from
this variable and others only write to it. A typical use: one thread is doing some
lengthy computation that might turn out to be superfluous, depending on what
other threads do. So we set up a boolean field in some object that is shared by all
these threads:

volatile boolean abortComputation;

Every now and then (say at the top of some main loop), the computing thread checks
the value of abortComputation. The other threads can tell it to stop by setting
abortComputation to true. Making this field volatile in this case has exactly the
same effect as putting every attempt to read or write the field in a synchronized

statement, but is considerably cheaper.

6.4 Interrupts

Amongst programmers, the traditional definition of an interrupt is an “asynchronous
transfer of control” to some pre-arranged location in response to some event2. That
is, one’s program is innocently tooling along when, between one instruction and the
next, the system inserts what amounts to a kind of procedure call to a subprogram
called an interrupt handler. In its most primitive form, an interrupt handler is not a
separate thread of control; rather it usurps the thread that is running your program.
The purpose of interrupts is to allow a program to handle a given situation when

1The reason for this restriction is technical. The Java specification requires that assigning to
or reading from a variable of a type other than long and double, is atomic, which means that any
value read from a variable is one of the values that was assigned to the variable. You might think
that always has to be so. However, many machines have to treat variables of type long and double

internally as if they were actually two smaller variables, so that assigning to them is actually two

operations. If a thread reads from such a variable during an assignment (by another thread), it
can therefore get a weird value that consists partly of what was previously in the variable, and
partly what the assignment is storing into the variable. Of course, a Java implementation could “do
the right thing” in such cases by quietly performing the equivalent of a synchronized statement
whenever reading or writing such “big” variables, but that is expensive, and it was deemed better
simply to let bad things happen and to warn programmers to be careful.

2Actually, ‘interrupt’ is also used to refer to the precipitating event itself; the terminology is a
bit loose.

88 CHAPTER 6. MULTIPLE THREADS OF CONTROL

it occurs, without having to check constantly (or poll, to use the technical term) to
see if the situation has occurred while in the midst of other work.

For example, from your program’s point of view, an interrupt occurs when you
type a Ctrl-C on your keyboard. The operating system you are using handles
numerous interrupts even as your program runs; one of its jobs is to make these
invisible to your program.

Without further restrictions, interrupts are extremely difficult to use safely. The
problem is that if one really can’t control at all where an interrupt might occur,
one’s program can all too easily be caught with its proverbial pants down. Consider,
for example, what happens with a situation like this:

// Regular program | // Interrupt handler

theBox.send (myMessage); | theBox.send (specialMessage);

where the interrupt handlers gets called in the middle of the regular program’s send
routine. Since the interrupt handler acts like a procedure that is called during the
sending of myMessage, we now have all the problems with simultaneous sends that
we discussed before. If you tried to fix this problem by declaring that the interrupt
handler must wait to acquire a lock on theBox (i.e., changing the normal rule that
a thread may hold any number of locks on an object), you’d have an even bigger
problem. The handler would then have to wait for the regular program, but the
regular program would not be running—the handler would be!

Because of these potential problems, Java’s “interrupts” are greatly constrained;
in fact, they are really not asynchronous at all. One cannot, in fact, interrupt
a thread’s execution at an arbitrary point, nor arrange to execute an arbitrary
handler. If T points to an active Thread (one that has been started, and has not
yet terminated), then the call T.interrupt() puts the thread associated with T

in interrupted status. When that thread subsequently performs a wait—or if it is
waiting at the time it is interrupted—two things happen in sequence:

• The thread re-acquires all its locks on the object on which it executed the
wait call in the usual way (that is, it waits for any other thread to release its
locks on the object).

• The thread then throws the exception InterruptedException (from package
java.lang). This is a checked exception, so your program must have the
necessary catch clause or throws clause to account for this exception. At
this point, the thread is no longer in interrupted status (so if it chooses to
wait again, it won’t be immediately re-awakened).

In Figures 6.1–6.2, methods that are declared to throw InterruptedException do
so when the current thread (the one executing the call, not necessarily the Thread

whose method is being executed) becomes interrupted (or was at the time of the
call). When that happens CURRENT.isInterrupted() reset to false.

You’ve probably noticed that being interrupted requires the coöperation of the
interrupted thread. This discipline allows the programmers to insure that interrupts
occur only where they are non- disruptive, but it makes it impossible to achieve

6.4. INTERRUPTS 89

effects such as stopping a renegade thread “against its will.” In the current state
of the Java library, it appears that this is, in fact, impossible. That is, there
is no general way, short of executing System.exit and shutting down the entire
program, to reliably stop a runaway thread. While poking around in the Java
library, you may run across the methods stop, suspend, resume, and destroy

in class Thread. All of these methods are either deprecated, meaning that they are
present for historical reasons and the language designers think you shouldn’t use
them, or (in the case of destroy) unimplemented. I suggest that you join in the
spirit of deprecation and avoid these methods entirely. First, it is very tricky to use
them safely. For example, if you manage to suspend a thread while it has a lock
on some object, that lock is not released. Second, because of the peculiarities of
Java’s implementation, they won’t actually do what you want. Specifically, the stop
method does not stop a thread immediately, but only at certain (unspecified) points
in the program. Threads that are in an infinite loop doing nothing but computation
may never reach such a point.

90 CHAPTER 6. MULTIPLE THREADS OF CONTROL

Index

* (in grammars) , see Kleene star
+ (in grammars), 8
..., see varargs

acquiring a lock, 84

actual type parameter, 67
ActualTypeArgument, 14
addition, 20, 29
Adjective, 7
Adverb, 7

Algol 60, 7
append (StringBuilder), 52
array, 10
ArrayType, 14
ASCII, 36, 38

Backus-Naur Form, see BNF
Backus-Normal Form, see BNF
BasicClassDeclaration, 8
BinaryExpression, 21, 24, 27
BinaryOperator, 21, 24, 27

bitwise and, 24
bitwise operators, 24
bitwise or, 24
BNF, 7
boolean keyword, 15

boxing, 72
byte keyword, 15

CASE INSENSITIVE ORDER, 41, 42
cast, 18
char keyword, 15

Character class, 39
character literals, 19
character set, 36
CharacterLiteral, 19
charAt (String), 41, 47

charAt (StringBuilder), 51

ClassOrInterfaceType, 14

ClassType, 14

compareTo (String), 42, 48

compareToIgnoreCase (String), 42

complement, 24

concat (String), 43, 44

concurrent programming, 75

container, 10

anonymous, 10

definition, 9

labeled, 10

simple, 10

structured, 10

context-free syntax, 6

control characters, 36

conversion, 18

core of a language, 5

critical region, 84

DecimalDigit, 17

delete (StringBuilder), 53

deleteCharAt (StringBuilder), 53

dereference, 12

destroy (Thread), 89

divide, 20, 29

double keyword, 15

Double.MAX VALUE field, 29

Double.MAX VALUE fields

MAX VALUE, 29

Double.MIN VALUE field, 29

Double.MIN VALUE fields

MIN VALUE, 29

Double.NaN field, 29

Double.NaN fields

NaN, 29

Double.NEGATIVE INFINITY field,
29

91

92 INDEX

Double.NEGATIVE INFINITY fields

NEGATIVE INFINITY, 29
Double.POSITIVE INFINITY field, 29
Double.POSITIVE INFINITY fields

POSITIVE INFINITY, 29

dynamic
property, 6
semantics, 6

dynamic type, 14

endsWith (String), 42

environment, 15
equals (String), 42, 48
equalsIgnoreCase (String), 42

EscapeSequence, 19
exclusive or, 24
Exponent, 28

ExpressionList, 8

float keyword, 15

Float.MAX VALUE field, 29
Float.MAX VALUE fields

MAX VALUE, 29

Float.MIN VALUE field, 29
Float.MIN VALUE fields

MIN VALUE, 29
Float.NaN field, 29

Float.NaN fields
NaN, 29

Float.NEGATIVE INFINITY field, 29

Float.NEGATIVE INFINITY fields
NEGATIVE INFINITY, 29

Float.POSITIVE INFINITY field, 29

Float.POSITIVE INFINITY fields
POSITIVE INFINITY, 29

FloatType, 28

formal type parameter, 67
format (String), 41, 44
format effectors, 36
format specifier, 44

format string, 44

getChars (StringBuilder), 51
grammar, 6

hashCode (String), 43, 49

HexDigit, 18

indexOf (String), 43
infinity, 28

insert (StringBuilder), 52
int keyword, 15
integer conversion, 18

integer literals, 17
IntegerLiteral, 17
IntegerNumeral, 17
IntegerTypeSuffix, 18

InterfaceType, 14
intern (String), 43, 48
InterruptedException class, 88

interrupts, 87

java.io classes

PrintStream, 57
PrintWriter, 57

java.lang classes

Character, 39
InterruptedException, 88
Runnable, 76

String, 39–49
StringBuilder, 49–50
Thread, 76, 78

java.lang.StringBuilder constructor, 51

java.lang.StringBuilder methods
StringBuilder (constructor), 51

java.util classes

Scanner, 62–64
java.util.regex classes

Matcher, 59

Pattern, 57–62

Kleene star, 8

lastIndexOf (String), 43

length (String), 41, 47
length (StringBuilder), 51
lexical structure, 5
library, standard, 6

lists (in grammars), 8
lock, 83
lock, acquiring, 84

long keyword, 15

INDEX 93

Matcher class, 59

MAX VALUE (field), 29
method, synchronized, 85
MIN VALUE (field), 29
modular arithmetic, 18, 20

multiply, 20, 29

NaN (field), 29
NaN (Not A Number), 28
negative 0, 28
NEGATIVE INFINITY (field), 29

newline, 20
nonterminal symbol, 7
NounPhrase, 7, 8

Object methods
toString, 44

OctalDigit, 17
OctalEscape, 19

parallel programming, 75
parameterized type, 67

ParameterList, 8
Pattern class, 57–62
pointer, 10

null, 12

POSITIVE INFINITY (field), 29
PositiveDigit, 17
PositiveOctalDigit, 17

PrimitiveType, 14
PrintStream class, 57
PrintWriter class, 57

programming language
definition, 5

prologue, standard, 6

RealLiteral, 28
reference, see pointer

ReferenceType, 14
referent, 12
regionMatches (String), 42
regular expression, 58

remainder, 20, 29
replace (String), 43
replace (StringBuilder), 53

resume (Thread), 89

reverse (StringBuilder), 53

Runnable class, 76

Scanner class, 62–64

semantics, 6

Sentence, 7

setCharAt (StringBuilder), 53

setLength (StringBuilder), 53

shift left, 24

shift right arithmetic, 24

shift right logical, 24

short keyword, 15

Sign, 28

SimpleNounPhrase, 8

SingleCharacter, 19

SingularNoun, 7

SingularVerb, 7

standard prologue, 6

start symbol, 7

startsWith (String), 42

starvation, 84

static

property, 5

semantics, 6

static type, 14

stop (Thread), 89

Strings, immutability of, 39

String class, 39–49

String methods

charAt, 41, 47

compareTo, 42, 48

compareToIgnoreCase, 42

concat, 43, 44

endsWith, 42

equals, 42, 48

equalsIgnoreCase, 42

format, 41, 44

hashCode, 43, 49

indexOf, 43

intern, 43, 48

lastIndexOf, 43

length, 41, 47

regionMatches, 42

replace, 43

startsWith, 42

94 INDEX

substring, 41, 47

toLowerCase, 42

toString, 43

toUpperCase, 42

trim, 43

valueOf, 41

StringBuilder (constructor), 51

StringBuilder class, 49–50

StringBuilder methods

append, 52

charAt, 51

delete, 53

deleteCharAt, 53

getChars, 51

insert, 52

length, 51

replace, 53

reverse, 53

setCharAt, 53

setLength, 53

substring, 51

toString, 51

strings, 39

substring (String), 41, 47

substring (StringBuilder), 51

subtraction, 20, 29

suspend (Thread), 89

synchronized keyword, 83, 85

synchronized method, 85

SynchronizeStatement, 83

syntactic variable, 7

syntax, 6

terminal symbols, 7

thread, 75

Thread class, 76, 78

Thread methods

destroy, 89

resume, 89

stop, 89

suspend, 89

toLowerCase (String), 42

toString (Object), 44

toString (String), 43

toString (StringBuilder), 51

toUpperCase (String), 42
trim (String), 43
Type, 14
type, 12

definition, 9
dynamic, 14
static, 14

type bound, 70
type denotation, 14
type parameter, 67
type variable, 67
TypeArguments, 14

unary minus, 20, 29
unary plus, 20, 29
UnaryAdditiveOperator, 21, 27
UnaryExpression, 21, 24, 27
unboxing, 72
Unicode, 37

value
definition, 9

valueOf (String), 41
varargs, 45
varargs (...), 45
variable-arity parameter, see varargs
VerbPhrase, 7
volatile keyword, 86

Wildcard, 14
WildcardBounds, 15
wildcards, 70
wrapper classes, 71

ZeroToThree, 19

	Describing a Programming Language
	Dynamic and Static Properties
	Describing Lexical Structure and Syntax

	Values, Types, and Containers
	Values and Containers
	Containers and Names
	Pointers

	Types
	Static vs. dynamic types
	Type denotations in Java

	Environments
	Applying the model to Java

	Numbers
	Integers and Characters
	Integral values and their literals
	Modular integer arithmetic
	Manipulating bits

	Floating-Point Numbers
	Floating-Point Literals
	Floating-point arithmetic

	Strings, Streams, and Patterns
	Bytes and Characters
	ASCII and Unicode
	The class Character

	Strings
	Constructing Strings
	Aside: Variable-Length Parameter Lists
	String Accessors
	String Comparisons, Tests, and Searches
	String Hashing

	StringBuilders
	Readers, Writers, Streams, and Files
	Input
	Readers and InputStreams
	Output
	PrintStreams and PrintWriters

	Regular Expressions and the Pattern Class
	Scanner

	Generic Programming
	Simple Type Parameters
	Type Parameters on Methods
	Restricting Type Parameters
	Wildcards
	Generic Programming and Primitive Types
	Caveats

	Multiple Threads of Control
	Creating and Starting Threads
	A question of terminology
	Synchronization
	Mutual exclusion
	Wait and notify
	Volatile storage

	Interrupts

	Index

