
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger

Fall 2015

CS 61B: Introduction to Programming, Part II

General Course Information∗

Instructor: Paul N. Hilfinger, 787 Soda Hall, 642-8401, hilfinger@cs.berkeley.edu

Introduction

Welcome to CS 61B. The CS 61 series is an introduction to computer science, with particular
emphasis on software and on machines from a programmer’s point of view. CS 61A covered
high-level approaches to problem-solving, providing you with a variety of ways to organize
solutions to programming problems: as compositions of functions, collections of objects, or
sets of rules. In CS 61B, we move to a somewhat more detailed (and to some extent, more
basic) level of programming. As in 61A, the correctness of a program is important. In CS 61B,
we’re concerned also with engineering. An engineer, it is said, is someone who can do for a
dime what any fool can do for a dollar. Much of 61B will be concerned with the tradeoffs
in time and memory for a variety of methods for structuring data. We’ll also be concerned
with the engineering knowledge and skills needed to build and maintain moderately large
programs.

Discussion and Lab Sections

The TAs for this course will handle discussion sections and labs. We will maintain contact
information about them on the web page. There will also be volunteer lab assistants staffing
the lab sections (at least, we sure hope so).

I really don’t care what discussion and lab section you choose to be in, but please make
sure you do have them and that their TAs know about you. If you want to change sections,
just clear it with the TAs involved.

∗With contributions by Brian Harvey, Mike Clancy, Katherine Yelick, Jonathan Shewchuk, and John

Canny.

1

http://www-inst.eecs.berkeley.edu/~cs61b


CS 61B General Course Information 2

Online Resources

The course home page will provide one-stop shopping for course information. All the hand-
outs, homeworks, labs, FAQs, staff contact information, etc., will be posted there. The home
page is http://www-inst.eecs.berkeley.edu/ cs61b/fa14.

Please do not print out online information that we hand out in class or that is available
through the indicated copy stores. It is a waste of paper and ties up the lab printers.

The course newsgroup is Piazza. For most questions about the course, the newsgroup is
the right place to ask them. The course staff read it regularly, so you will get a quick answer.
That way, other students benefit by seeing the question and the answer. Don’t forget to check
the newsgroup before asking your question, just in case someone else has posted it.

If you are stumped by a particular error in a program you are writing for the class and
want to ask us about it, please use the bug-submit program described in the Announcements
section of the class web page. This will send us all of your code, as well as your question.
Please do not use the newsgroup for this purpose. We will not feel obliged to answer debugging
questions on this forum; it is almost always a waste of time, due to the lack of sufficient
information.

The e-mail address cs61b@cs will send a message to the TAs and me. You can use it for
correspondence that you don’t want to send to the newsgroup. We all read it, so you will
usually get a quick reply. If you send a question that is of general interest, we may post the
response on the newsgroup (we will keep personal information out of it, of course). To talk
with us, the best way is to come during regular office hours (posted on our doors as well as
in the home page). Many of us are available at other times by appointment. Please don’t be
shy; web pages, e-mail, and news are useful, but it’s still much easier to understand something
when you can talk about it face-to-face.

When logged into our instructional systems for CS61B work, please make sure that you
are using the standard configuration for the class—that is, the files .bashrc, .emacs, etc.,
that should have been in your accounts initially. If you must modify these, we suggest that
you continue to have them read our scripts from the ~cs61b/adm directory, so that we can
easily propagate corrections to you. In any case, if you do modify these files, you are on your
own.

Background Knowledge

Some of you may have thought that the stuff you learned in CS 61A/61AS was mere esoteric
fluff inexplicably thrown at you to weed out the faint of heart. Not true. In fact, although the
syntaxes of Java, Python, and Scheme are enormously different, the underlying computational
models are surprisingly similar. You will find that almost all the “big ideas” you see in Java
had their analogues in what you learned in CS 61A (indeed, one self-test of your understanding
of the course material in CS 61B is to check that you see all the similarities). This course will
assume you are familiar with the material in CS 61A, and there will be some references to
the online 61A textbook (adapted for Python from Abelson, Sussman, and Sussman). If you
haven’t taken 61A, you may be confused sometimes, and you should make sure you review

http://www-inst.eecs.berkeley.edu/~cs61b/fa14
http://www.piazza.com/class/cs61b


CS 61B General Course Information 3

the material (which you’ll be able to find online in the CS61A web pages) early on in the
semester.

All the instructional machines for this course will be running various flavors of the Unix
operating system (generally, Ubuntu,) and it’s a Really Good Idea for you to become famil-
iar with it. There will be online information available from the class home page. Another
good introduction is “A Practical Guide to The Unix System (3rd edition)” by Mark So-
bell (Addison-Wesley, 1994) available at bookstores on- and off-line. Over the course of the
semester, there are help sessions on various useful computer-related topics; we will put ap-
propriate links on the course home page.

Is this the right course?

This is a course about data structures and programming methods. It happens to also teach
Java, since it is hard to teach programming without a language. However, it is not intended
as an exhaustive course on Java, the World-Wide Web, creating applets, user interfaces,
graphics, or any of that fun stuff. Some of you may have already had a data structures
course, and simply want to learn Java or C++. For you, a much better choice would be
self-study, or (for C++) CS 9F “C++ for programmers,” a one-unit self-paced course that
will teach you more of what you want to know in less time. There is no enrollment limit
for that course, and you work through it at your own pace after the first and only lecture.
There is a similar course for Java (CS 9G). Finally, the 1-unit self-paced course CS 47B is for
students “with sufficient partial credit in 61B,” allowing them (with instructor’s permission)
to complete the 61B course requirement without taking the full course.

Wait-listed?

We would prefer to enroll all who meet the prerequisites. If you are wait-listed and do meet
the prerequisites, stick around; people generally drop within the first few weeks, and you can
get in. Those of you who are in and who drop: please inform TeleBEARS as soon as possible.
If you didn’t get in because of a lab- or discussion-section conflict, you will have to work
out some way of attending one of the sections we’ll be running. Do not worry about telling
TeleBEARS; we’ll try to work out what to do to get you in.

Course Materials

The only regular textbook in this class is Head First Java, 2nd Edition by Sierra and Bates
(O’Reilly, 2005). This covers only the first part of the course. I’m not assigning a data-
structures textbook for the other part of the course; they cost too much. Instead, I’ve
provided all other material as readers. These are available online from the class webpage.
Depending on demand, I may also make hard copies available from Vick Copy (1879 Euclid
at Hearst); I’ll announce this if it happens. Do not go to Copy Central for readers; I’m not
using them this semester.



CS 61B General Course Information 4

The Java text is not a reference book (it says so on page xxii). If you intend to become
a serious programmer, you will probably want a full reference at some point. The official
description of the Java core language is available online in The Java R© Language Specification
(Java SE 7 Edition) by James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.
This book does not contain a reference for the library, and the paper library references I’ve
seen are less than satisfactory (and quite expensive). I’m inclined for now to stick with the
online documentation for the Java library (there’s a link to it on the class home page).

Laboratory and Discussion Sections

There will be one lab section and one discussion section per week. We have scheduled lab
sections between the Wednesday and Friday lectures, and discussion sections between the
Monday and Wednesday lectures. You should expect that we will present new material
during the scheduled labs. Actually, you can do the projects and lab exercises any time, but
we can only guarantee organized assistance during the scheduled lab sections in Soda. You
should plan on attending the discussion sections. Tests will be returned in section.

Labs will be online, so you will be able to do much of the work ahead of time. One
major purpose of the labs is to give your TA a chance to check up on you and to find out
what people are and are not understanding. We’ve found that with the increasing ability to
work anywhere has come an increasing tendency for students to go off by themselves and fall
behind. Don’t make this mistake. Keep up with homework and lab work and above all let us

know when you don’t understand something!

Homeworks are also online. We will not hand out assignments on paper; you are responsi-
ble for checking what’s due when on the class homework webpage. Homeworks are individual
efforts.

We evaluate projects and homeworks on the instructional machines. Very often, you will
find that for various reasons (different software versions, different operating systems), a Java
program will work on your home machine, but not on ours (the “write once, run anywhere”
hype is just that: hype). So be sure to test your software on the instructional machines before
submission.

Software

The official text editor and programming environment for this course is Emacs, which is
available on the instructional machines, on GNU/Linux, MacOS X, and Windows. While the
Emacs user interface may not look as nice, it works quite well, thank you, and provides all
the editting, compiling, debugging, and version-control support you’ll need.

I used to use Eclipse, a programming environment that’s widely used in industry, but
found its complexity and poor engineering made it a poor example for impressionable youth.
In addition, it runs spectacularly badly when used remotely (i.e., run on a remote server
from your home machine), whereas Emacs performs quite acceptably in this mode (so if you
don’t want to hassle with installing software at home, you can ssh into the instructional
machines from home and use them easily). You are, however, free to use Eclipse or other

http://docs.oracle.com/javase/specs/jls/se7/html


CS 61B General Course Information 5

programming environments (JBuilder, Netbeans, Intellij IDEA, etc.) at home. Whatever you
use, however, your submitted solutions must conform to our expected layouts, as indicated
in the assignments.

This semester, we will be using Java (J2SE 7), which you can download for (or is provided
with) Windows, GNU/Linux, and MacOS X. To obtain a version of the system for home
use, go to the class web page, where you will find a link to Sun’s download page. Under
the circumstances, you may find it more convenient to simply use the instructional machines
remotely by logging in from home. We should have information on this posted as well.
The modified version of Sun’s debugger that we use outside of Eclipse—called gjdb—is only
likely to work on Sun’s JDK; in particular, don’t expect it to work at all on a non-Sun Java
implementation. In particular, if you are using GNU/Linux distributions (such as Ubuntu),
you may find that the GNU java runtime is the default, and that you will have to install the
Sun version. You will need to download some .class files from us. Details will appear on
the class home page.

We’ll be using the version-control system Subversion for keeping your work. Version-
control systems allow you maintain a series of “snapshots” of your files at various points in
their development. Used properly, this provides you some back-up protection, so that you
can recover previous states of your work when something goes wrong. We’ll also use it for
handing in work. In later, team-oriented courses (as well as the real world), version-control
systems will help manage collaborative work. There are Subversion installations available for
Windows, GNU/Linux, and MacOS X. Emacs provides a pretty simple interface that should
work well for our purposes. Eclipse offers two rather persnickety interfaces: Subversive and
Subclipse.

Unfortunately, experience shows that Subversion often shoots CS61B students in the feet,
for some reason. Therefore, this semester, we’ll be trying out a simplified front-end program
for Subversion called hw. You can use it at home, too, if you first install Python 3 (at least
on Linux or Mac). You will still need to install Subversion; you just won’t use it directly.

Computer Accounts

The CS 61B scheduled labs will all be held in 275 Soda, which contains Intel workstations
running Solaris. At other times, you can use any computer that is not being used for another
scheduled lab. You will receive a computer account form in lab on Tuesday. Extra forms will
be available in 385 Soda after that. Information on computer facilities and computing from
home should be available via the class Web page.

You must electronically register the account you intend to use for handing in assignments
(only one account, please) during the second week (by Friday’s lecture). The class web page
contains a link with which you can register your account and perform other adminstrative
actions. Please use it to give your registration information and to generate the keys you need
to work remotely and hand in homework assignments.



CS 61B General Course Information 6

Homework and Programming Assignments

There will be many lab activities that record some of your work, more ordinary homework
for you to do outside the lab, some of which includes small programming problems, and four
larger-scale programming projects. You will turn in everything electronically. Be sure you
have an account (registered for CS61B) for that purpose.

Testing and Grading

In addition to homework, there will be at least two tests during the term, and a final. All
tests are open book, open notes, and may cover any material whatever (however, to prevent
out-and-out mutiny, I am generally reasonable about the material selected).

The programming projects will count for a total of 100 points, and written homeworks
and labs for 20 points. The final will be worth 46 points and other tests will count for a total
of 34 points. Your letter grade will be determined by total points out of the possible 200:

185 170 160 150 140 130 120 110 100 90 80 75 < 75

A+ A A- B+ B B- C+ C C- D+ D D- F

In other words, there is no curve; your grade will depend only on how well you do, and not
on how well everyone else does. For your information, University guidelines suggest that the
average GPA for a lower-division required course be in the range 2.5–2.9, with 2.7 (B-) being
typical. This corresponds to getting 50% on tests (typical for my courses), 75% on projects,
and 100% on homeworks and labs (on which you get full credit simply for turning something
in that displays reasonable effort on all questions).

If you believe we have misgraded an exam, return it to your TA with a note explaining
your complaint. We will regrade the entire test. You should check the online solutions first
to make sure that this regrade will make your total score go up.

I will grant grades of Incomplete only for dire medical or personal emergencies that cause
you to miss the final, and only if your work up to that point has been satisfactory. Do not

try to get an incomplete simply as a way to have more time to study or do a project; that is
contrary to University policy.

Inevitably, some of you will have conflicts with the scheduled exam times. I will arrange
for alternative test times for those people who have sufficient cause. Sufficient cause includes
exams scheduled at an overlapping time in another course, medical or family emergencies, or
important religious holidays (however, I believe I have avoided all of those). Popular reasons
that are not sufficient cause include having job interviews, having a plane ticket that you (or
your parents) bought without consulting the schedule, having exams or assignments in other
courses at nearby times, being behind in your reading, being tired, or being hung over. With
the obvious exception of emergencies, you must arrange alternative exam times with me well
in advance.



CS 61B General Course Information 7

Etiquette

Technology is wonderful, isn’t it? Why, now you can read your mail, surf the net, order new
books and clothes, and even do your homework anytime and anywhere. It’s great, but don’t
do it in my class. In fact, I’d suggest not doing it in any of your other classes, either, nor in
any public lectures you might attend.

The problem is that while all this connectedness is nice (for you), it is not particularly
discreet. If a student is doodling in his old-fashioned notebook (the kind that uses paper),
then at least the speaker and the most of the audience won’t notice. But you’ve probably
noticed that you can hear someone typing from anywhere in the room. And the moving
images on screens are much more distracting to those sitting behind than are movements of
a pencil1. In short, the use of laptops (and cell phones) in class advertises disrespect of the
speaker. As a service to you and the public at large, I have determined to help you break the
habit of doing so.

In passing, I should mention that there are old-fashioned ways of showing disrespect
as well, which you should also avoid. Reading the newspaper during class is one example
(especially when you hold it up in front of your face so that everyone can see what you’re
doing). Gossiping with your neighbor is another (especially since nobody seems to know how
to whisper anymore—possibly as a result of early earbud-induced hearing loss).

Policy on Collaboration and Cheating

I strongly encourage you to help each other on homework assignments and in labs. Ordinary
homework and labs are not seriously graded: you get points for showing evidence of substantial
effort. Naturally, though, it is in your best interest not to take advantage of this fact, and to
treat homework seriously.

The four projects are individual efforts in this class (no partnerships). Feel free to discuss
projects or pieces of them before doing the work. But you must complete and write up each
project yourself. That is, feel free to discuss projects with each other, but be aware that we
expect your work to be substantially different from that of all your classmates (in this or any
other semester).

Copying and presenting another person’s project or test work as your own constitutes
cheating. Electronically submitted programs are particularly easy to check for copying or
trivial changes, and we will be doing that. I will report any incident of cheating to my
departmental chairman and to the Office of Student Conduct.

I realize that CS and EE programs at Berkeley are very intense, and that students are
often under extraordinary pressure to make deadlines. But deadlines are a fact of life, and
will persist after college. The trick is to get ahead of them. You can seek advice from the
staff early if you feel yourself getting behind in something. Knowing where and how to get
advice on things you don’t understand is a skill everyone needs to succeed in the real world.
Finally, those of you who are EECS freshmen and sophomores should realize that even a poor

1What’s that? You’re actually using your laptop to take notes, you say? Yeah, right.



CS 61B General Course Information 8

grade in one introductory class will have little effect on your final GPA; for you, there’s even
less to gain from yielding to temptation.

Lateness

We will give no credit for written homework turned in after the deadline. Please do not beg
and plead for exceptions; an individual assignment is worth too few points to justify your
groveling at the my feet (a comment that probably applies to individual test questions, as
well). You can miss an assignment or two and still get your A+.

On programming projects, we are a tad more lenient. I’ll penalize an assignment 5/12
percent for each hour it is late, rounded off in some unspecified fashion. I’ll give you some
grace hours for free. They work like this: on the first project, you get 24 hours of additional
time past the deadline before we start counting your project as late. On the second project,
you also get up to 24 hours plus any leftover late time you had from the first project. Likewise,
on the third project you get 24 hours, plus any remaining late time you didn’t use for the
second project. This arrangement is an experiment. I used to just give a total of 72 free late
hours for all four projects, but found that people tended to blow all their time on the first
project and, in fact, to delay working on it in the expectation of using late hours.


