
CS61B Lecture #7

Today:

• Java Library Classes for lists.

• Iterators, ListIterators

Last modified: Fri Sep 12 14:41:31 2008 CS61B: Lecture #7 1

Abstracting “Listness”

• So far, we’ve seen fairly primitive types for representing lists of
things.

• Arrays:

– Good: random access to items.

– Bad: hard to expand, insert items, or delete items.

• Linked lists (e.g., IntList):

– Good: easy to expand, insert, delete.

– Bad: must access in sequence, pointer manipulation can be tricky.

• Both used to represent same thing (sequence of things), but syntax
for using very different,

• So hard to switch from one to the other if you change your mind.

Last modified: Fri Sep 12 14:41:31 2008 CS61B: Lecture #7 2

Useful Classes from the Java Library

• Java library has types to represent collections of objects, including

– Lists (sequences) of objects: ArrayList, LinkedList.

– Sets of objects: TreeSet, HashSet.

– Maps (dictionaries): TreeMap, HashMap.

• These types are “in the package java.util.”

– Package = Set of classes and subpackages.

– Notation: java.util.ArrayList: “The class named ArrayList in
the (sub)package named util in the package named java.

• Names of these classes reflect implementations, but they “publi-
cize” very similar interfaces to the outside.

• Thus, easy to change from using ArrayList to LinkedList, e.g.

Last modified: Fri Sep 12 14:41:31 2008 CS61B: Lecture #7 3

Lists

• The list classes ArrayList and LinkedList both share many public
methods, including:

– size(), isEmpty(): Number of items, test for 0 items.

– get(k): Get item #k, where 0 ≤ k < size().

– remove(k): Remove item #k.

– clear(): Make the list empty.

– set(k, x): Set item #k to x.

– add(x), add(k,x): Add item to end, or a position k.

– contains (x): True iff there is an item that equals x (according to
.equals method).

– indexOf (x): Gives the position (0 ≤ · <size()) of the first item
that .equals x, or -1 if there is none.

• Both expand sequence as needed (automatically).

• A few methods (unfortunately) specialized to one or the other class
(e.g. LinkedList.removeFirst().

Last modified: Fri Sep 12 14:41:31 2008 CS61B: Lecture #7 4

Example: Read and reverse a list

/** Read the sequence of words on INPUT, and print on

* OUTPUT in reverse order. */

static void readAndReverse (Scanner input, PrintStream output) {

ArrayList<String> L = new ArrayList<String> ();

while (input.hasNext ())

L.add (input.next ());

for (int k = L.size ()-1; k >= 0; k -= 1)

output.printf ("%s ", L.get (k));

}

• Not shown: import java.util.ArrayList; at top of file.

• Could also use a LinkedList<String>. What problem might there be
with that?

Last modified: Fri Sep 12 14:41:31 2008 CS61B: Lecture #7 5

Iterators

• Problem: Indexing as for arrays (via .get) not always best (fastest)
way to get items.

• Problem: But would like to use same interface (same methods, same
text) for ArrayList and LinkedList.

• Abstraction to the rescue: the library has class called Iterator,
which acts like a “moving finger” through a collection of objects.

static void printList (ArrayList<String> L) {

System.out.printf ("{%n");

for (Iterator<String> place = L.iterator (); place.hasNext ();)

System.out.printf (" %s%n", place.next ());

System.out.printf ("}%n");

}

So common, Java 1.5 introduced shorthand:

for (String s : L)

System.out.printf (" %s%n", s);

Last modified: Fri Sep 12 14:41:31 2008 CS61B: Lecture #7 6

ListIterator

• Library also has type ListIterator

• These have both .previous() and .next() methods.

• Also allow insertion.

• Look at reversal again:

/** Read the sequence of words on INPUT, and print on

* OUTPUT in reverse order. */

static void readAndReverse (Scanner input, PrintStream output) {

ArrayList<String> L = new ArrayList<String> ();

ListIterator<String> place = L.listIterator ();

while (input.hasNext ())

place.add (input.next ());

while (place.hasPrevious ())

System.out.printf ("%s ", place.previous ());

}

Last modified: Fri Sep 12 14:41:31 2008 CS61B: Lecture #7 7

Primitive Types and Wrappers

• ArrayLists and the like can only take elements that are pointers, no
ints, doubles, booleans, etc.

• So, Java library contains corresponding wrapper classes: Integer,
Double, Boolean, etc.—all pointed-to objects

• So, new Integer(3) is 3 . The intValue() method retrieves
the 3.

• All very tedious, so Java 1.5 converts int ⇔ Integer automatically—
boxes 3 to make an Integer, unboxes to get 3 back.

• So we can do things like this:

ArrayList<Double> sqrts = new ArrayList<Double>();

while (inp.hasNext ())

sqrts.add (Math.sqrt (inp.nextDouble ()));

double sum = 0;

for (double x : sqrts)

sum += x;

• Almost painless, but, alas, expensive.

Last modified: Fri Sep 12 14:41:31 2008 CS61B: Lecture #7 8

	CS61B Lecture #7
	Abstracting ``Listness''
	Useful Classes from the Java Library
	Lists
	Example: Read and reverse a list
	Iterators
	ListIterator
	Primitive Types and Wrappers

