
CS61B Lecture #5: Simple Pointer Manipulation

Announcement

• Discussion Change: This week (11 September), discussion section
114 (3–4PM) will move from 3 Evans to 6 Evans.

• Today: More pointer hacking.

Last modified: Mon Sep 8 17:35:32 2008 CS61B: Lecture #5 1

Destructive Incrementing

Destructive solutions may modify the original list to save time or space:

/** List of all items in P incremented by n. May destroy original. */

static IntList dincrList (IntList P, int n) {

if (P == null)

return null;

else {

P.head += n;

P.tail = dincrList (P.tail, n);

return P;

}

}

/** List L destructively incremented

* by n. */

static IntList dincrList (IntList L, int n) {

// ’for’ can do more than count!

for (IntList p = L; p != null; p = p.tail)

p.head += n;

return L;

}

X = IntList.list (3, 43, 56);

/* IntList.list from HW #1 */

Q = dincrList (X, 2);

X:

Q:

L:

P:

5 45 58

Last modified: Mon Sep 8 17:35:32 2008 CS61B: Lecture #5 2

Side Excursion: Another Way to View Pointers

• Some folks find the idea of “copying an arrow” somewhat odd.

• Alternative view: think of a pointer as a label , like a street address.

• Each object has a permanent label on it, like the address plaque on
a house.

• Then a variable containing a pointer is like a scrap of paper with a
street address written on it.

• One view:

last:

result: 5 45

• Alternative view:

#7last:

#7result: 5 #3
7

45
3

Last modified: Mon Sep 8 17:35:32 2008 CS61B: Lecture #5 3

Another Way to View Pointers (II)

• Assigning a pointer to a variable looks just like assigning an integer
to a variable.

• So, after executing “last = last.tail;” we have

last:

result: 5 45

• Alternative view:

#3last:

#7result: 5 #3
7

45
3

• Under alternative view, you might be less inclined to think that as-
signment would change object #7 itself, rather than just “last”.

• BEWARE! Internally, pointers really are just numbers, but Java
treats them as more than that: they have types, and you can’t just
change integers into pointers.

Last modified: Mon Sep 8 17:35:32 2008 CS61B: Lecture #5 4

Another Example: Non-destructive List Deletion

If L is the list [2, 1, 2, 9, 2], we want removeAll(L,2) to be the new
list [1, 9].

/** The list resulting from removing all instances of X from L

* non-destructively. */

static IntList removeAll (IntList L, int x) {

if (L == null)

return null;

else if (L.head == x)

return removeAll (L.tail, x);

else

return new IntList (L.head, removeAll (L.tail, x));

}

Last modified: Mon Sep 8 17:35:32 2008 CS61B: Lecture #5 5

Aside: How to Write a Loop (in Theory)

• Try to give a description of how things look on any arbitrary itera-
tion of the loop.

• This description is known as a loop invariant, because it is true from
one iteration to the next.

• The loop body then must

– Start from any situation consistent with the invariant;

– Make progress in such a way as to make the invariant true again.

while (condition) {

// Invariant true here

loop body
// Invariant again true here

}

// Invariant true and condition false.

• So if (invariant and not condition) is enough to insure we’ve got the
answer, we’re done!

Last modified: Mon Sep 8 17:35:32 2008 CS61B: Lecture #5 6

Iterative Non-destructive List Deletion

Same as before, but use front-to-back iteration rather than recursion.
/** The list resulting from removing all instances of X from L

* non-destructively. */

static IntList removeAll (IntList L, int x) {

IntList result, last;

result = last = null;

for (; L != null; L = L.tail) {

/* L != null and I is true. */

if (x == L.head)

continue;

else if (last == null)

result = last = new IntList (L.head, null);

else

last = last.tail = new IntList (L.head, null);

}

return result;

}

P:

L:

result:

last:

2 1 2 9

removeAll (P, 2)
P does not change!

1 9

Here, I is the loop invariant:
Result is all elements of L0 not equal to x up to and not
including L, and last points to the last element of result,
if any. We use L0 here to mean “the original sequence of
int values in L.”

Last modified: Mon Sep 8 17:35:32 2008 CS61B: Lecture #5 7

Destructive Deletion

: Original : after Q = dremoveAll (Q,1)

Q: 1 2 3 1 1 0 1

/** The list resulting from removing all instances of X from L.

* The original list may be destroyed. */

static IntList dremoveAll (IntList L, int x) {

if (L == null)

return null;

else if (L.head == x)

return dremoveAll (L.tail, x);

else {

L.tail = dremoveAll (L.tail, x);

return L;

}

}

Last modified: Mon Sep 8 17:35:32 2008 CS61B: Lecture #5 8

Iterative Destructive Deletion

/** The list resulting from removing all instances of X from L.

* Original contents of L may be destroyed. */

static IntList dremoveAll (IntList L, int x) {

IntList result, last;

result = last = null;

while (L != null) {

IntList next = L.tail;

if (x != L.head) {

if (last == null)

result = last = L;

else

last = last.tail = L;

L.tail = null;

}

L = next;

}

return result;

}

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

Last modified: Mon Sep 8 17:35:32 2008 CS61B: Lecture #5 9

	CS61B Lecture #5: Simple Pointer Manipulation
	Destructive Incrementing
	Side Excursion: Another Way to View Pointers
	Another Way to View Pointers (II)
	Another Example: Non-destructive List Deletion
	Aside: How to Write a Loop (in Theory)
	Iterative Non-destructive List Deletion
	Destructive Deletion
	Iterative Destructive Deletion

