
Lecture #40

• Trial autograder run sometime tonight.

• Test from 1–3 here next Wednesday (10 Dec.). Please make sure I
hear from you if you can’t make it.

• Final is Wed, 17 Dec from 5–8 in Bechtel Aud.

• HKN should be here on Monday (8 Dec).

Today: A little side excursion into nitty-gritty stuff: Storage man-
agement.

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 1

Scope and Lifetime

• Scope of a declaration is portion of program text to which it applies
(is visible).

– Need not be contiguous.

– In Java, is static: independent of data.

• Lifetime or extent of storage is portion of program execution dur-
ing which it exists.

– Always contiguous

– Generally dynamic: depends on data

• Classes of extent:

– Static: entire duration of program

– Local or automatic: duration of call or block execution (local vari-
able)

– Dynamic: From time of allocation statement (new) to dealloca-
tion, if any.

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 2

Explicit vs. Automatic Freeing

• Java has no means to free dynamic storage.

• However, when no expression in any thread can possibly be influ-
enced by or change an object, it might as well not exist:

IntList wasteful ()

{

IntList c = new IntList (3, new IntList (4, null));

return c.tail;

// variable c now deallocated, so no way

// to get to first cell of list

}

• At this point, Java runtime, like Scheme’s, recycles the object c

pointed to: garbage collection.

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 3

Under the Hood: Allocation

• Java pointers (references) are represented as integer addresses.

• Corresponds to machine’s own practice.

• In Java, cannot convert integers ↔ pointers,

• But crucial parts of Java runtime implemented in C, or sometimes
machine code, where you can.

• Crude allocator in C:

char store[STORAGE_SIZE]; // Allocated array

size_t remainder = STORAGE_SIZE;

/** A pointer to a block of at least N bytes of storage */

void* simpleAlloc (size_t n) { // void*: pointer to anything

if (n > remainder) ERROR ();

remainder = (remainder - n) & ~0x7; // Make multiple of 8

return (void*) (store + remainder);

}

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 4



Example of Storage Layout: Unix

Stack
(local)

Unallocated

Heap
(new)

Static
storage

Executable
codeAddress 0

• OS gives way to turn chunks of unallocated region into heap.

• Happens automatically for stack.

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 5

Explicit Deallocating

• C/C++ normally require explicit deallocation, because of

– Lack of run-time information about what is array

– Possibility of converting pointers to integers.

– Lack of run-time information about unions:

union Various {

int Int;

char* Pntr;

double Double;

} X; // X is either an int, char*, or double

• Java avoids all three problems; automatic collection possible.

• Explicit freeing can be somewhat faster, but rather error-prone:

– Memory corruption

– Memory leaks

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 6

Free Lists

• Explicit allocator grabs chunks of storage from OS and gives to
applications.

• Or gives recycled storage, when available.

• When storage is freed, added to free list data structure to be re-
cycled.

• Used both for explicit freeing and some kinds of automatic garbage
collection.

• Problem: free memory fragments.

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 7

Boundary Tag Methods

100
F/A

0 4

Admin word

120
A/F

100

160
A/A

220

24
F/A

380 384

32
A/F

404

160
F/A

436 440

Next free

4
A/F

596

Prev. free
X Y Z

FREE

LIST

G1 = malloc(96);

X = malloc(115);

Y = malloc(156);

G2 = malloc(19);

Z = malloc(26);

G3 = malloc(155);

free(G1); free(G3); free(G2);

Size
Free?/Prev Free?

Admin word

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 8



Simplifying Coalescence: The Buddy System

• Allocate in powers of 2.

• Coalesce only with your buddy:

– For object of size 2
n at byte #M , buddy at byte #(M ^ (1<<n).

– Just need a bit to indicate if it is allocated, plus list of free
blocks for each n.

0

32

64

128

256

free list for 2
5

free list for 2
6

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 9

Buddy System at Work

256:

128:

64:

32:

0

256:

128:

64:

32:

128

64

32

0
X

X = malloc (32);

256:

128:

64:

32:

192

R

160

128
Q

64

Z

32
Y

0
X

Y = malloc (32); Z = malloc (64);

Q = malloc (32); R = malloc (64)

256:

128:

64:

32:

192

160

128
Q

64

Z

32

0
X

free (Y); free (R);

256:

128:

64:

32:

128

64

Z

0

free (X); free (Q);

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 10

Garbage Collection: Reference Counting

• Idea: Keep count of number of pointers to each object. Release
when count goes to 0.

X: 1 1 1

1 A 1 B 1 C

Y:

X: 1 2 1

1 A 1 B 1 C

Y:

Y = X.tail;

X: 0 3 1

1 A 1 B 1 C

Y:

X = Y;

X: 2 1

0 A 1 B 1 C etc.

Y:

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 11

Garbage Collection: Mark and Sweep

Roots (locals + statics)

5 E B G

D
7

C
42
A

F

1. Traverse and mark
graph of objects.

2. Sweep through
memory, freeing
unmarked objects.

Before sweep: 42
A

D
B*

G F
C

A
D*

7 G D
E* F

C
G*

E

After sweep: D
B

G
D

7 G D
E G

E

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 12



Copying Garbage Collection

• Mark-and-sweep algorithms don’t move any exisiting objects—pointers
stay the same.

• The total amount of work depends on the amount of memory swept—
i.e., the total amount of active (non-garbage) storage + amount of
garbage. Not necessarily a big hit: the garbage had to be active at
one time, and hence there was always some “good” processing in the
past for each byte of garbage scanned.

• Another approach: copying garbage collection takes time propor-
tional to amount of active storage:

– Traverse the graph of active objects breadth first, copying them
into a large contiguous area (called “to-space”).

– As you copy each object, mark it and put a forwarding pointer
into it that points to where you copied it.

– The next time you have to copy a marked object, just use its
forwarding pointer instead.

– When done, the space you copied from (“from-space”) becomes
the next to-space; in effect, all its objects are freed in constant
time.

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 13

Copying Garbage Collection Illustrated

Roots

B
5

E

from: 42
A

D
B

G F
C

A
D

7 G D
E F

C
G

E

to:

(a)

Roots

B’
5

E’

from: 42
A

B’
B*

G F
C

A
D

7 G E’
E* F

C
G

E

to: D
B’

G D
E’(b)

B: Old object
B’: New object

Roots

B’
5

E’

from: 42
A

B’
B*

G F
C

A D’
D*

7 G E’
E* F

C G’
G*

E

to: D’
B’

G’ D
E’ D’

7 G
G’

E

(c)

Roots

B’
5

E’

from: 42
A

B’
B*

G F
C

A D’
D*

7 G E’
E* F

C G’
G*

E

to: D’
B’

G’ D’
E’ D’

7 G’
G’

E’

(d)

Last modified: Wed Dec 3 11:08:14 2008 CS61B: Lecture #40 14


	Lecture #40
	Scope and Lifetime
	Explicit vs. Automatic Freeing
	Under the Hood: Allocation
	Example of Storage Layout: Unix
	Explicit Deallocating
	Free Lists 
	Boundary Tag Methods
	Simplifying Coalescence: The Buddy System
	Buddy System at Work
	Garbage Collection: Reference Counting
	Garbage Collection: Mark and Sweep
	Copying Garbage Collection
	Copying Garbage Collection Illustrated

