CS61B Lecture \#31

In-class Test: Friday, 14 November 2007
Review session: 306 Soda on TUESDAY at 4:00-5:30.

Project 3 is on-line (slight delay in skeleton, though).

Today:

- Pseudo-random Numbers (Chapter 11)
- What use are random sequences?
- What are "random sequences"?
- Pseudo-random sequences.
- How to get one.
- Relevant Java library classes and methods.
- Random permutations.

What Is a "Random Sequence"?

- How about: "a sequence where all numbers occur with equal frequency"?
- Like 1, 2, 3, 4, ...?
- Well then, how about: "an unpredictable sequence where all numbers occur with equal frequency?"
- Like $0,0,0,1,1,2,2,2,2,2,3,4,4,0,1,1,1, \ldots$?
- Besides, what is wrong with $0,0,0,0, \ldots$ anyway? Can't that occur by random selection?

Why Random Sequences?

- Choose statistical samples
- Simulations
- Random algorithms
- Cryptography:
- Choosing random keys
- Generating streams of random bits (e.g., SSL xor's your data with a regeneratable, pseudo-random bit stream that only you and the recipient can generate).
- And, of course, games

Pseudo-Random Sequences

- Even if definable, a "truly" random sequence is difficult for a computer (or human) to produce.
- For most purposes, need only a sequence that satisfies certain statistical properties, even if deterministic.
- Sometimes (e.g., cryptography) need sequence that is hard or impractical to predict.
- Pseudo-random sequence: deterministic sequence that passes some given set of statistical tests.
- For example, look at lengths of runs: increasing or decreasing contiguous subsequences.
- Unfortunately, statistical criteria to be used are quite involved. For details, see Knuth.

Generating Pseudo-Random Sequences

- Not as easy as you might think.
- Seemingly complex jumbling methods can give rise to bad sequences.
- Linear congruential method is a simple method that has withstood test of time:

$$
\begin{aligned}
X_{0} & =\text { arbitrary seed } \\
X_{i} & =\left(a X_{i-1}+c\right) \bmod m, \quad i>0
\end{aligned}
$$

- Usually, m is large power of 2 .
- For best results, want $a \equiv 5 \bmod 8$, and a, c, m with no common factors.
- This gives generator with a period of m (length of sequence before repetition), and reasonable potency (measures certain dependencies among adjacent X_{i}.)
- Also want bits of a to "have no obvious pattern" and pass certain other tests (see Knuth).
- Java uses $a=25214903917, c=11, m=2^{48}$, to compute 48-bit pseudo-random numbers but I haven't checked to see how good this is.

Other Generators

- Additive generator:

$$
X_{n}= \begin{cases}\text { arbitary value, } & n<55 \\ \left(X_{n-24}+X_{n-55}\right) & \bmod 2^{e}, \\ n \geq 55\end{cases}
$$

- Other choices than 24 and 55 possible.
- This one has period of $2^{f}\left(2^{55}-1\right)$, for some $f<e$.
- Simple implementation with circular buffer:

$$
\begin{aligned}
& \mathrm{i}=(\mathrm{i}+1) \% 55 ; \\
& \mathrm{X}[\mathrm{i}]+=\mathrm{X}[(\mathrm{i}+31) \% 55] ; / / \text { Why }+31 \text { (} 55-24) \text { instead of }-24 \text { ? } \\
& \text { return X[i]; /* modulo } 2^{32} * /
\end{aligned}
$$

- where $\mathrm{X}[0$. . 54] is initialized to some "random" initial seed values.

What Can Go Wrong?

- Short periods, many impossible values: E.g., a, c, m even.
- Obvious patterns. E.g., just using lower 3 bits of X_{i} in Java's 48-bit generator, to get integers in range 0 to 7 . By properties of modular arithmetic,

$$
\begin{aligned}
X_{i} \bmod 8 & =\left(25214903917 X_{i-1}+11 \bmod 2^{48}\right) \bmod 8 \\
& =\left(5\left(X_{i-1} \bmod 8\right)+3\right) \bmod 8
\end{aligned}
$$

so we have a period of 8 on this generator; sequences like

$$
0,1,3,7,1,2,7,1,4, \ldots
$$

are impossible. This is why Java doesn't give you the raw 48 bits.

- Bad potency leads to bad correlations.
- E.g. Take $c=0, a=65539, m=2^{31}$, and make 3D points: ($X_{i} / S, X_{i+1} / S, X_{i+2} / S$), where S scales to a unit cube.
- Points will be arranged in parallel planes with voids between.
- So, "random points" won't ever get near many points in the cube.

Adjusting Range and Distribution

- Given raw sequence of numbers, X_{i}, from above methods in range (e.g.) 0 to 2^{48}, how to get uniform random integers in range 0 to $n-1$?
- If $n=2^{k}$, is easy: use top k bits of next X_{i} (bottom k bits not as "random")
- For other n, be careful of slight biases at the ends. For example, if we compute $X_{i} /\left(2^{48} / n\right)$ using all integer division, and if $\left(2^{48} / n\right)$ doesn' \dagger come out even, then you can get n as a result (which you don't want).
- Easy enough to fix with floating point, but can also do with integers; one method (used by Java for type int):

```
/** Random integer in the range 0 .. n-1, n>0. */
int nextInt (int n) {
    long X = next random long ( }0\leqX<\mp@subsup{2}{}{48}\mathrm{ );
    if (n is 2k for some k) return top k bits of X;
    int MAX = largest multiple of n that is <248;
    while ( }\mp@subsup{X}{i}{}>>=\operatorname{MAX}\mathrm{ ) }\textrm{X}=\mathrm{ next random long ( }0\leqX<2\mp@subsup{2}{}{48}\mathrm{ );
    return Xi / (MAX/n);
}
```


Arbitrary Bounds

- How to get arbitrary range of integers (L to U)?
- To get random float, x in range $0 \leq x<d$, compute
return d*nextInt ($1 \ll 24$) / ($1 \ll 24$);
- Random double a bit more complicated: need two integers to get enough bits.
long bigRand $=(($ long $)$ nextInt $(1 \ll 26) \ll 27)+($ long $) n e x t \operatorname{Int}(1 \ll 27)$; return d * bigRand / (1L << 53) ;

Other Distributions

- Can also turn uniform random integers into arbitrary other distributions, like the Gaussian.

- Curve is the desired probability distribution $(P(x)$ is the probability that a certain random variable is $\leq x$.)
- Choose y uniformly between 0 and 1 , and the corresponding x will be distributed according to P.

Computing Arbitrary Discrete Distribution

- Example from book: want integer values X_{i} with $\operatorname{Pr}\left(X_{i}=0\right)=1 / 12$, $\operatorname{Pr}\left(X_{i}=1\right)=1 / 2, \operatorname{Pr}\left(X_{i}=2\right)=1 / 3, \operatorname{Pr}\left(X_{i}=3\right)=1 / 12:$

- To get desired probabilities, choose floating-point number, $0 \leq R_{i}<$ 4 , and see what color you land on.
- ≤ 2 colors in each beaker $\equiv \leq 2$ colors between i and $i+1$.

```
return ( }\mp@subsup{R}{i}{}%1.0>v[(int) Ri]) wher
    ? top[(int) Ri}]\quadv={1.0/3.0, 2.0/3.0,0, 1.0/3.0 }
    : bot[R ];
```


Java Classes

- Math.random (): random double in [0..1).
- Class java. util. Random: a random number generator with constructors:
Random() generator with "random" seed (based on time).
Random(seed) generator with given starting value (reproducible).
- Methods
next $(k) k$-bit random integer
nextInt(n) int in range [0..n).
nextLong() random 64-bit integer.
nextBoolean(), nextFloat(), nextDouble() Next random values of other primitive types.
nextGaussian() normal distribution with mean 0 and standard deviation 1 ("bell curve").
- Collections.shuffle (L, R) for list R and Random R permutes L randomly (using R).

Shuffling

- A shuffle is a random permutation of some sequence.
- Obvious dumb technique for sorting N-element list:
- Generate N random numbers
- Attach each to one of the list elements
- Sort the list using random numbers as keys.
- Can do quite a bit better:

```
void shuffle (List L, Random R) {
    for (int i = L.size (); i > 0; i -= 1)
    swap element i-1 of L with element R.nextInt (i) of L;
}
- Example:
\begin{tabular}{|c|c|c|c|}
\hline Swap items & \(\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}\) & Swap items & \(\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}\) \\
\hline Start &  & \(3 \Longleftrightarrow 3\) &  \\
\hline \(5 \Longleftrightarrow 1\) &  & \(2 \Longleftrightarrow 0\) & \begin{tabular}{|c|}
\hline 2 S \\
\hline
\end{tabular} \\
\hline \(4 \Longleftrightarrow 2\) &  & \(1 \Longleftrightarrow 0\) &  \\
\hline
\end{tabular}
```


Random Selection

- Same technique would allow us to select N items from list:
/** Permute L and return sublist of $\mathrm{K}>=0$ randomly
* chosen elements of L , using R as random source. */

List select (List L, int k, Random R) \{
for (int i = L.size () ; i+k > L.size (); i -= 1)
swap element i-1 of L with element
R.nextInt (i) of L;
return L.sublist (L.size ()-k, L.size ());
\}

- Not terribly efficient for selecting random sequence of K distinct integers from [0..N), with $K \ll N$.

```
/** Random sequence of M distinct integers
* from 0..N-1, 0<=M<=N. */
IntList selectInts(int N, int M, Random R)
{
    IntList S = new IntList();
    for (int i = N-M; i < N; i += 1) {
        // All values in S are < i
        int s = R.randInt(i+1); // 0 <= s <= i < N
        if (s == S.get(k) for some k)
            // Insert value i (which can't be there
            // yet) after the s (i.e., at a random
            // place other than the front)
            S.add (k+1, i);
        else
            // Insert random value s at front
            S.add (0, s);
    }
    return S;
}
```

