Public Service Announcement: The CSUA is holding its general meeting on 7 November 5:30PM in the Wozniak lounge.

Administrative

- Test \#2 on Friday, 14 November, here. Test will be 1:50 long.

Today:

- Balanced search structures (DS(IJ), Chapter 9

Coming Up:

- Pseudo-random Numbers (DS(IJ), Chapter 11)

Balanced Search: The Problem

- Why are search trees important?
- Insertion/deletion fast (on every operation, unlike hash table, which has to expand from time to time).
- Support range queries, sorting (unlike hash tables)
- But $O(\lg N)$ performance from binary search tree requires remaining keys be divided \approx by some some constant >1 at each node.
- In other words, that tree be "bushy"
- "Stringy" trees (many nodes with one side much longer than other) perform like linked lists.
- Suffices that heights of two subtrees always differ by no more than constant K.

Example of Direct Approach: B-Trees

Idea: If tree grows/shrinks only at root, then two sides always have same height.

- Order M B-tree is an M-ary search tree, $M>2$.
- Each node, except root, has from $\lceil M / 2\rceil$ to M children, and one key "between" each two children.
- Root has from 2 to M children (in non-empty tree).
- Children at bottom of tree are all empty (don't really exist) and equidistant from root.
- Obeys search-tree property:
- Keys are sorted in each node.
- All keys in subtrees to left of a key, K, are $<K$, and all to right are $>K$.
- Searching is simple generalization of binary search.
- Insertion: add just above bottom; split overfull nodes as needed, moving one key up to parent.

Sample Order 4 B-tree ($(2,4$) Tree)

- Crossed lines show path when finding 40.
- Keys on either side of each child pointer in path bracket 40.
- Each node has at least 2 children, and all leaves (little circles) are at the bottom, so height must be $O(\lg N)$.
- In real-life B-tree, order typically much bigger
- comparable to size of disk sector, page, or other convenient unit of I/O

Inserting in B-tree (Simple Case)

- Start:

- Insert 7:

Deleting Keys from B-tree

- Remove 20 from last tree.

Sample Red-Black Tree

- Every red-black tree corresponds to a $(2,4)$ tree, and the operations on one correspond to those on the other.
- Each node of $(2,4)$ tree corresponds to a cluster of 1-3 red-black nodes in which the top node is black and any others are red.

Example of Red-Black Insertion (I)

- Insert 7:

- Here, sibling of offending node (10) is black, so rotate and recolor.
- In corresponding $(2,4)$ tree, new node fits in existing node.
- (Dashed lines show groups of tree nodes that correspond to $(2,4)$ tree nodes with >2 children.)

Red-Black Insertion and Rotations

- Insert at bottom just as for binary tree (color red except when tree initially empty).
- Then rotate (and recolor) to restore red-black property, and thus balance.
- Rotation of trees preserves binary tree property, but changes balance.

Last modified: Tue Nov 18 19:17:42 2008
CS61B: Lecture \#29 10

Example of Red-Black Insertion (II)

- Insert 27, recolor to restore red-black property. Doesn't do any rebalancing, but sets things up to cause future insertions to rebalance.
- In corresponding $(2,4)$ tree, this recoloring splits nodes (adds extra black nodes). We don't have to recolor the root to red, as we did 25 , because we are increasing the height of this $(2,4)$ tree.

Really Efficient Use of Keys: the Trie

- Have been silent about cost of comparisons.
- For strings, worst case is length of string.
- Therefore should throw extra factor of key length, L, into costs:
$-\Theta(M)$ comparisons really means $\Theta(M L)$ operations.
- So to look for key X, keep looking at same chars of $X M$ times.
- Can we do better? Can we get search cost to be $O(L)$?

Idea: Make a multi-way decision tree, with one decision per character of key.

Adding Item to a Trie

- Result of adding bat and faceplate.
- New edges ticked.

The Trie: Example

- Set of keys
\{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet\}
- Ticked lines show paths followed for "abash" and "fabric"
- Each internal node corresponds to a possible prefix.
- Characters in path to node = that prefix.

Last modified: Tue Nov 18 19:17:42 2008

A Side-Trip: Scrunching

- For speed, obvious implementation for internal nodes is array indexed by character.
- Gives $O(L)$ performance, L length of search key.
- [Looks as if independent of N, number of keys. Is there a dependence?]
- Problem: arrays are sparsely populated by non-null values-waste of space.

Idea: Put the arrays on top of each other!

- Use null (0, empty) entries of one array to hold non-null elements of another.
- Use extra markers to tell which entries belong to which array.

Scrunching Example

Small example: (unrelated to Tries on preceding slides)

- Three leaf arrays, each indexed $0 . .9$

- Now overlay them, but keep track of original index of each item:

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Last modified: Tue Nov 18 19:17:42 2008
CS61B: Lecture \#29 18

Summary

- Balance in search trees allows us to realize $\Theta(\lg N)$ performance.
- B-trees, red-black trees:
- Give $\Theta(\lg N)$ performance for searches, insertions, deletions.
- B-trees good for external storage. Large nodes minimize \# of I/O operations
- Tries:
- Give $\Theta(B)$ performance for searches, insertions, and deletions, where B is length of key being processed.
- But hard to manage space efficiently.
- Interesting idea: scrunched arrays share space.
- Skip lists:
- Give probable $\Theta(\lg N)$ performace for searches, insertions, deletions
- Easy to implement.
- Presented for interesting ideas: probabilistic balance, randomized data structures.
Last modified: Tue Nov 18 19:17:42 2008

