## CS61B Lectures \#27-28

Announcements:

- We'll be running a preliminary testing run for Project \#2 on Tuesday night.

Today:

- Sorting algorithms: why?
- Insertion, Shell's, Heap, Merge sorts
- Quicksort
- Selection
- Distribution counting, radix sorts

Readings: Today: $\operatorname{DS}(I J)$, Chapter 8; Next topic: Chapter 9.

## Purposes of Sorting

- Sorting supports searching
- Binary search standard example
- Also supports other kinds of search:
- Are there two equal items in this set?
- Are there two items in this set that both have the same value for property $X$ ?
- What are my nearest neighbors?
- Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).


## Some Definitions

- A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, $\preceq$, is:
- Total: $x \preceq y$ or $y \preceq x$ for all $x, y$.
- Reflexive: $x \preceq x$;
- Antisymmetric: $x \preceq y$ and $y \preceq x$ iff $x=y$.
- Transitive: $x \preceq y$ and $y \preceq z$ implies $x \preceq z$.
- However, our orderings may allow unequal items to be equivalent:
- E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
- A sort that does not change the relative order of equivalent entries is called stable.


## Classifications

- Internal sorts keep all data in primary memory
- External sorts process large amounts of data in batches, keeping what won't fit in secondary storage (in the old days, tapes).
- Comparison-based sorting assumes only thing we know about keys is order
- Radix sorting uses more information about key structure.
- Insertion sorting works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- Selection sorting works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.


## Sorting by Insertion

- Simple idea:
- starting with empty sequence of outputs.
- add each item from input, inserting into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where $k$ is \# of outputs so far.
- So gives us $O\left(N^{2}\right)$ algorithm. Can we say more?


## Inversions

- Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:

```
for (int i = 1; i < A.length; i += 1) {
    int j;
    Object x = A[i];
    for (j = i-1; j >= 0; j -= 1) {
            if (A[j].compareTo (x) <= 0) /* (1) */
                break;
            A[j+1] = A[j];
    }
    A[j+1] = x;
}
```

- \#times (1) executes $\approx$ how far x must move.
- If all items within $K$ of proper places, then takes $O(K N)$ operations.
- Thus good for any amount of nearly sorted data.
- One measure of unsortedness: \# of inversions: pairs that are out of order ( $=0$ when sorted, $N(N-1) / 2$ when reversed).
- Each step of j decreases inversions by 1.


## Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^{k}-1$ apart:
- sort items \#0, $2^{k}-1,2\left(2^{k}-1\right), 3\left(2^{k}-1\right), \ldots$, then
- sort items \#1, $1+2^{k}-1,1+2\left(2^{k}-1\right), 1+3\left(2^{k}-1\right), \ldots$, then
- sort items \#2, $2+2^{k}-1,2+2\left(2^{k}-1\right), 2+3\left(2^{k}-1\right), \ldots$, then
- etc.
- sort items \#2 $2^{k}-2,2\left(2^{k}-1\right)-1,3\left(2^{k}-1\right)-1, \ldots$,
- Each time an item moves, can reduce \#inversions by as much as $2^{k}+1$.
- Now sort subsequences of elements $2^{k-1}-1$ apart:
- sort items \# $0,2^{k-1}-1,2\left(2^{k-1}-1\right), 3\left(2^{k-1}-1\right), \ldots$, then
- sort items \#1, $1+2^{k-1}-1,1+2\left(2^{k-1}-1\right), 1+3\left(2^{k-1}-1\right), \ldots$,
-:
- End at plain insertion sort ( $2^{0}=1$ apart), but with most inversions gone.
- Sort is $\Theta\left(N^{1.5}\right)$ (take CS170 for why!).


## Example of Shell's Sort



I: Inversions left.
C: Comparisons needed to sort subsequences.

## Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- Gives $O(N \lg N)$ algorithm ( $N$ remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

| original: | 19 | 0 | -1 | 7 | 23 | 2 | 42 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| heapified: | 42 | 23 | 19 | 7 | 0 | 2 | -1 |
|  | 23 7 19 -1 0 2 | 42 |  |  |  |  |  |
| 19 | 7 | 2 | -1 | 0 | 23 | 42 |  |
| 7 | 7 | 0 | 2 | -1 | 19 | 19 | 23 |

## Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
- First break data into small enough chunks to fit in memory and sort.
- Then repeatedly merge into bigger and bigger sequences.
- Can merge $K$ sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate:


## Illustration of Internal Merge Sort

L: $(9,15,5,3,0,6,10,-1,2,20,8)$




(8)

$3: 1 \bullet(-1,0,3,5,6,9,10,15)$
4 elements processed
6 elements processed
11 elements processed

## Quicksort: Speed through Probability

## Idea:

- Partition data into pieces: everything $>$ a pivot value at the high end of the sequence to be sorted, and everything $\leq$ on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, \#inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.


## Example of Quicksort

- In this example, we continue until pieces are size $\leq 4$.
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

- Now everything is "close to" right, so just do insertion sort:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline-7 & -5 & -4 & -1 & 0 & 10 & 12 & 13 & 15 & 16 & 18 & 19 & 22 & 29 \\
\hline
\end{array}
$$

## Performance of Quicksort

- Probabalistic time:
- If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
- If choice of pivots bad, most items on one side each time: $\Theta\left(N^{2}\right)$.
- $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega\left(N^{2}\right)$ time very unlikely!


## Quick Selection

The Selection Problem: for given $k$, find $k^{\text {th }}$ smallest element in data.

- Obvious method: sort, select element \#k, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
- Go through array, keep smallest $k$ items.
- Get probably $\Theta(N)$ time for all $k$ by adapting quicksort:
- Partition around some pivot, $p$, as in quicksort, arrange that pivo $\dagger$ ends up at dividing line.
- Suppose that in the result, pivot is at index $m$, all elements $\leq$ pivot have indicies $\leq m$.
- If $m=k$, you're done: $p$ is answer.
- If $m>k$, recursively select $k^{\text {th }}$ from left half of sequence.
- If $m<k$, recursively select $(k-m-1)^{\text {th }}$ from right half of sequence.


## Selection Example

Problem: Find just item \#10 in the sorted version of array:
Initial contents:

| 51 | 60 | 21 | -4 | 37 | 4 | 49 | 10 | $40 *$ | 59 | 0 | 13 | 2 | 39 | 11 | 46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Looking for \#10 to left of pivot 40:

| 13 | 31 | 21 | -4 | 37 | $4^{*}$ | 11 | 10 | 39 | 2 | 0 | 40 | 59 | 51 | 49 | 46 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Looking for \#6 to right of pivot 4:

$$
\begin{array}{|l|l|l|l||l|l|l|l|l|l|l|l||l|l|l|l|l|}
\hline-4 & 0 & 2 & 4 & 37 & 13 & 11 & 10 & 39 & 21 & 31 * & 40 & 59 & 51 & 49 & 46 & 60 \\
\hline
\end{array}
$$

Looking for \#1 to right of pivot 31:


Just two elements; just sort and return \#1:


Result: 39

## Selection Performance

- For this algorithm, if $m$ roughly in middle each time, cost is

$$
\begin{aligned}
C(N) & = \begin{cases}1, & \text { if } N=1, \\
N+C(N / 2), & \text { otherwise. }\end{cases} \\
& =N+N / 2+\ldots+1 \\
& =2 N-1 \in \Theta(N)
\end{aligned}
$$

- But in worst case, get $\Theta\left(N^{2}\right)$, as for quicksort.
- By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all $k$ (take CS170).


## Better than $N \lg N$ ?

- Can prove that if all you can do to keys is compare them then sorting must take $\Omega(N \lg N)$.
- Basic idea: there are $N$ ! possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do $N$ ! different combinations of move operations.
- Therefore, there must be $N$ ! possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for $k$ if tests is $2^{k}$.
- Thus, need enough tests so that $2^{k}>N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$
m!\in \sqrt{2 \pi m}\left(\frac{m}{e}\right)^{m}\left(1+\Theta\left(\frac{1}{m}\right)\right)
$$

this tells us that

$$
k \in \Omega(N \lg N)
$$

## Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- For example, how can we sort a set of $N$ integer keys whose values range from 0 to $k N$, for some small constant $k$ ?
- One technique: count the number of items $<1,<2$, etc.
- If $M_{p}=\#$ items with value $<p$, then in sorted order, the $j^{\text {th }}$ item with value $p$ must be $\# M_{p}+j$.
- Gives linear-time algorithm.


## Distribution Counting Example

- Suppose all items are between 0 and 9 as in this example:

- "Counts" line gives \# occurrences of each key.
- "Running sum" gives cumulative count of keys $\leq$ each value...
- ... which tells us where to put each key:
- The first instance of key $k$ goes into slot $m$, where $m$ is the number of key instances that are $<k$.


## Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet


bat, be, bet, cad, can, cat, con, let, set

## MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

| A | posn |
| :---: | :---: |
| * set, cat, cad, con, bat, can, be, let, bet | 0 |
| * bat, be, bet / cat, cad, con, can / let / set | 1 |
| bat / * be, bet / cat, cad, con, can / let / set | 2 |
| bat / be / bet / * cat, cad, con, can / let / set | 1 |
| bat / be / bet / * cat, cad, can / con / let / set | 2 |
| bat / be / bet / cad / can / cat / con / let / set |  |

## Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where $B$ is total size of the key data.
- Have measured other sorts as function of \#records.
- How to compare?
- To have $N$ different records, must have keys at least $\Theta(\lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where $K$ is size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(\lg N)^{2}$ operations.
- While radix sort takes $B=N \lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.


## And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: $N$ insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$
\Theta(N+N \lg N)=\Theta(N \lg N)
$$

## Summary

- Insertion sort: $\Theta(N k)$ comparisons and moves, where $k$ is maximum amount data is displaced from final position.
- Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O\left(N^{2}\right)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.

