
CS61B Lecture #15

Announcements:

• Please use bug-submit for code problems.

• Watch the newsgroup and class web site for updates, hints, useful
new utilities, etc.

Readings for Today: Data Structures (Into Java), Chapter 1;

Readings for next Topics: Data Structures, Chapter 2–4

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 1

What Are the Questions?

• Cost is a principal concern throughout engineering:

“An engineer is someone who can do for a dime what any fool
can do for a dollar.”

• Cost can mean

– Operational cost (for programs, time to run, space requirements).

– Development costs: How much engineering time? When deliv-
ered?

– Costs of failure: How robust? How safe?

• Is this program fast enough? Depends on:

– For what purpose;

– What input data.

• How much space (memory, disk space)?

– Again depends on what input data.

• How will it scale, as input gets big?

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 2

Enlightening Example

Problem: Scan a text corpus (say 107 bytes or so), and find and print
the 20 most frequently used words, together with counts of how often
they occur.

• Solution 1 (Knuth): Heavy-Duty data structures

– Hash Trie implementation, randomized placement, pointers ga-
lore, several pages long.

• Solution 2 (Doug McIlroy): UNIX shell script:

tr -c -s ’[:alpha:]’ ’[\n*]’ < FILE | \

sort | \

uniq -c | \

sort -n -r -k 1,1 | \

sed 20q

• Which is better?

– #1 is much faster,

– but #2 took 5 minutes to write and processes 20MB in 1 minute.

– I pick #2.

• In most cases, anything will do: Keep It Simple.
Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 3

Cost Measures (Time)

• Wall-clock or execution time

– You can do this at home:

time java FindPrimes 1000

– Advantages: easy to measure, meaning is obvious.

– Appropriate where time is critical (real-time systems, e.g.).

– Disadvantages: applies only to specific data set, compiler, ma-
chine, etc.

• Number of times certain statements are executed:

– Advantages: more general (not sensitive to speed of machine).

– Disadvantages: doesn’t tell you actual time, still applies only to
specific data sets.

• Symbolic execution times:

– That is, formulas for execution times or statement counts in
terms of input size.

– Advantages: applies to all inputs, makes scaling clear.

– Disadvantage: practical formula must be approximate, may tell
very little about actual time.

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 4

Asymptotic Cost

• Symbolic execution time lets us see shape of the cost function.

• Since we are approximating anyway, pointless to be precise about
certain things:

– Behavior on small inputs:

∗ Can always pre-calculate results some results.

∗ Times for small inputs not usually important.

– Constant factors (as in “off by factor of 2”):

∗ Just changing machines causes constant-factor change.

• How to abstract away from (i.e., ignore) these things?

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 5

Handy Tool: Order Notation

• Idea: Don’t try to produce specific functions that specify size, but
rather families of similar functions.

• Say something like “f is bounded by g if it is in g’s family.”

• For any function g(x), the functions 2g(x), 1000g(x), or for any K >
0, K · g(x), all have the same “shape”. So put all of them into g’s
family.

• Any function h(x) such that h(x) = K · g(x) for x > M (for some
constant M) has g’s shape “except for small values.” So put all of
these in g’s family.

• If we want upper limits, throw in all functions that are everywhere
≤ some other member of g’s family. Call this family O(g) or O(g(n)).

• Or, if we want lower limits, throw in all functions that are every-
where ≥ some other member of g’s family. Call this family Ω(g).

• Finally, define Θ(g) = O(g) ∩ Ω(g)—the set of functions bracketed
by members of g’s family.

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 6

Big Oh

• Goal: Specify bounding from above.

2g(x)

g(x)

f(x)

M = 1

• Here, f(x) ≤ 2g(x) as long as x > 1,

• So f(x) is in g’s upper-bound family, written

f(x) ∈ O(g(x)),

• . . . even though f(x) > g(x) everywhere.

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 7

Big Omega

• Goal: Specify bounding from below:

g(x)

0.5g(x)

f ′(x)

M = 1

• Here, f ′(x) ≥ 1
2
g(x) as long as x > 1,

• So f ′(x) is in g’s lower-bound family, written

f ′(x) ∈ Ω(g(x)),

• . . . even though f(x) < g(x) everywhere.

• In fact, we also have f ′(x) ∈ O(g(x)) and f(x) ∈ Ω(g(x)) and so we
can also write

f(x), f ′(x) ∈ Θ(g(x)).
Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 8

Using the Notation

• Can use this order notation for any kind of real-valued function.

• We will use them to describe cost functions. Example:

/** Find position of X in list L. Return -1 if not found */

int find (List L, Object X) {

int c;

for (c = 0; L != null; L = L.next, c += 1)

if (X.equals (L.head)) return c;

return -1;

}

• Choose representative operation: number of .equals tests.

• If N is length of L, then loop does at most N tests: worst-case
time is N tests.

• In fact, total # of instructions executed is roughly proportional
to N in the worst case, so can also say worst-case time is O(N),
regardless of units used to measure.

• Use N > M provision (in defn. of O(·)) to handle empty list.

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 9

Why It Matters

• Computer scientists often talk as if constant factors didn’t matter
at all, only the difference of Θ(N) vs. Θ(N 2).

• In reality they do, but we still have a point: at some point, constants
get swamped.

n 16 lg n
√

n n n lg n n2 n3 2n

2 16 1.4 2 2 4 8 4
4 32 2 4 8 16 64 16
8 48 2.8 8 24 64 512 256
16 64 4 16 64 256 4, 096 65, 636
32 80 5.7 32 160 1024 32, 768 4.2 × 109

64 96 8 64 384 4, 096 262, 144 1.8 × 1019

128 112 11 128 896 16, 384 2.1 × 109 3.4 × 1038

...
1, 024 160 32 1, 024 10, 240 1.0 × 106 1.1 × 109 1.8 × 10308

...
220 320 1024 1.0 × 106 2.1 × 107 1.1 × 1012 1.2 × 1018 6.7 × 10315,652

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 10

Some Intuition on Meaning of Growth

• How big a problem can you solve in a given time?

• In the following table, left column shows time in microseconds to
solve a given problem as a function of problem size N .

• Entries show the size of problem that can be solved in a second,
hour, month (31 days), and century, for various relationships be-
tween time required and problem size.

• N = problem size

Time (µsec) for Max N Possible in
problem size N 1 second 1 hour 1 month 1 century

lg N 10300000 101000000000 108·10
11

109·10
14

N 106 3.6 · 109 2.7 · 1012 3.2 · 1015

N lg N 63000 1.3 · 108 7.4 · 1010 6.9 · 1013

N 2 1000 60000 1.6 · 106 5.6 · 107

N 3 100 1500 14000 150000
2N 20 32 41 51

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 11

Careful!

• It’s also true that the worst-case time is O(N 2), since N ∈ O(N 2)
also: Big-Oh bounds are loose.

• The worst-case time is Ω(N), since N ∈ Ω(N), but that does not
mean that the loop always takes time N , or even K · N for some K.

• Instead, we are just saying something about the function that maps
N into the largest possible time required to process an array of
length N .

• To say as much as possible about our worst-case time, we should try
to give a Θ bound: in this case, we can: Θ(N).

• But again, that still tells us nothing about best-case time, which
happens when we find X at the beginning of the loop. Best-case time
is Θ(1).

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 12

Effect of Nested Loops

• Nested loops often lead to polynomial bounds:

for (int i = 0; i < A.length; i += 1)

for (int j = 0; j < A.length; j += 1)

if (i != j && A[i] == A[j])

return true;

return false;

• Clearly, time is O(N 2), where N = A.length. Worst-case time is
Θ(N 2).

• Loop is inefficient though:

for (int i = 0; i < A.length; i += 1)

for (int j = i+1; j < A.length; j += 1)

if (A[i] == A[j]) return true;

return false;

• Now worst-case time is proportional to

N − 1 + N − 2 + . . . + 1 = N(N − 1)/2 ∈ Θ(N 2)

(so asymptotic time unchanged by the constant factor).

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 13

Recursion and Recurrences: Fast Growth

• Silly example of recursion:

/** True iff X is a substring of S */

boolean occurs (String S, String X) {

if (S.equals (X)) return true;

if (S.length () <= X.length ()) return false;

return

occurs (S.substring (1), X) ||

occurs (S.substring (0, S.length ()-1), X);

}

• In the worst case, both recursive calls happen.

• Consider a fixed size for X, say N0.

• Define C(N) to be the worst-case cost of occurs(S,X) for S of
length N , measured in # of calls to occurs. Then

C(N) =

1, if N ≤ N0,
2C(N − 1) if N > N0

• So C(N) grows exponentially:

C(N) = 2C(N−1) = 2·2C(N−2) = . . . = 2 · 2 · · · 2
︸ ︷︷ ︸

N−N0

·1 = 2N−N0 ∈ Θ(2N)

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 14

Binary Search: Slow Growth

/** True X iff is an element of S[L .. U]. Assumes

* S in ascending order, 0 <= L <= U-1 < S.length. */

boolean isIn (String X, String[] S, int L, int U) {

if (L > U) return false;

int M = (L+U)/2;

int direct = X.compareTo (S[M]);

if (direct < 0) return isIn (X, S, L, M-1);

else if (direct > 0) return isIn (X, S, M+1, U);

else return true;

}

• Here, worst-case time, C(D), (as measured by # of string compar-
isons), depends on size D = U − L + 1.

• We eliminate S[M] from consideration each time and look at half the
rest. Assume D = 2k − 1 for simplicity, so:

C(D) =

0, if D ≤ 0,
1 + C((D − 1)/2), if D > 0.

= 1 + 1 + . . . + 1
︸ ︷︷ ︸

k

+0

= k = ⌈lg D⌉ ∈ Θ(lg D)

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 15

Another Typical Pattern: Merge Sort

List sort (List L) {

if (L.length () < 2) return L;

Split L into L0 and L1 of about equal size;
L0 = sort (L0); L1 = sort (L1);

return Merge of L0 and L1

}

Merge (“combine into a sin-
gle, ordered list”) takes
time proportional to size of
its result.

• Assuming that size of L is N = 2k, worst-case cost function, C(N),
counting just merge time (∝ # items merged):

C(N) =

1, if N < 2;
2C(N/2) + N, if N ≥ 2.

= 2(2C(N/4) + N/2) + N

= 4C(N/4) + N + N

= 8C(N/8) + N + N + N

= N · 1 + N + N + . . . + N
︸ ︷︷ ︸

k=lg N

= N + N lg N ∈ Θ(N lg N)

• In general, Θ(N lg N) for arbitrary N (not just 2k).

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 16

Amortization: Expanding Vectors

• When using array for expanding sequence, best to double size of
array to grow it. Here’s why.

• If array is size s, doubling its size and moving s elements to the new
array takes time ∝ 2s.

• Cost of inserting N items into array, doubling size as needed, start-
ing with array size 1:

To Insert Resizing Cumulative Resizing Cost Array Size
Item # Cost Cost per Item After Insertions

1 0 0 0 1
2 2 2 1 2

3 to 4 4 6 1.5 4
5 to 8 8 14 1.75 8

...
2m + 1 to 2m+1 2m+1 2m+2 − 2 ≈ 2 2m+1

• If we spread out (amortize) the cost of resizing, we average about
2 time units on each item: “amortized insertion time is 2 units.”

• So even though worst-case time for adding one element to array of
N elements is 2N , time to add N elements is Θ(N), not Θ(N 2).

Last modified: Mon Oct 6 16:08:02 2008 CS61B: Lecture #15 17

	CS61B Lecture #15
	What Are the Questions?
	Enlightening Example
	Cost Measures (Time)
	Asymptotic Cost
	Handy Tool: Order Notation
	Big Oh
	Big Omega
	Using the Notation
	Why It Matters
	Some Intuition on Meaning of Growth
	Careful!
	Effect of Nested Loops
	Recursion and Recurrences: Fast Growth
	Binary Search: Slow Growth
	Another Typical Pattern: Merge Sort
	Amortization: Expanding Vectors

