CS61B Lecture \#15

Announcements:

- Please use bug-submit for code problems.
- Watch the newsgroup and class web site for updates, hints, useful new utilities, etc.

Readings for Today: Data Structures (Into Java), Chapter 1;

Readings for next Topics: Data Structures, Chapter 2-4

Enlightening Example

Problem: Scan a text corpus (say 10^{7} bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
- Hash Trie implementation, randomized placement, pointers galore, several pages long.
- Solution 2 (Doug McIlroy): UNIX shell script:
tr -c -s '[:alpha:]' '[\n*]' < FILE | \}
sort | \}
uniq -c | \}
sort -n -r -k 1,1 | \}
sed 20q
- Which is better?
- \#1 is much faster,
- but \#2 took 5 minutes to write and processes 20MB in 1 minute.
- I pick \#2.
- In most cases, anything will do: Keep It Simple.

Last modified: Mon Oct 6 16:08:02 2008

What Are the Questions?

- Cost is a principal concern throughout engineering:
"An engineer is someone who can do for a dime what any fool can do for a dollar."
- Cost can mean
- Operational cost (for programs, time to run, space requirements).
- Development costs: How much engineering time? When delivered?
- Costs of failure: How robust? How safe?
- Is this program fast enough? Depends on:
- For what purpose;
- What input data.
- How much space (memory, disk space)?
- Again depends on what input data.
- How will it scale, as input gets big?

Last modified: Mon Oct 6 16:08:02 2008

Cost Measures (Time)

- Wall-clock or execution time
- You can do this at home:
time java FindPrimes 1000
- Advantages: easy to measure, meaning is obvious.
- Appropriate where time is critical (real-time systems, e.g.).
- Disadvantages: applies only to specific data set, compiler, machine, etc.
- Number of times certain statements are executed:
- Advantages: more general (not sensitive to speed of machine).
- Disadvantages: doesn't tell you actual time, still applies only to specific data sets.
- Symbolic execution times:
- That is, formulas for execution times or statement counts in terms of input size.
- Advantages: applies to all inputs, makes scaling clear.
- Disadvantage: practical formula must be approximate, may tell very little about actual time.

Asymptotic Cost

- Symbolic execution time lets us see shape of the cost function.
- Since we are approximating anyway, pointless to be precise about certain things:
- Behavior on small inputs:
* Can always pre-calculate results some results.
* Times for small inputs not usually important.
- Constant factors (as in "off by factor of 2"):
* Just changing machines causes constant-factor change.
- How to abstract away from (i.e., ignore) these things?

Big Oh

- Goal: Specify bounding from above.

- Here, $f(x) \leq 2 g(x)$ as long as $x>1$,
- So $f(x)$ is in g^{\prime} s upper-bound family, written

$$
f(x) \in O(g(x))
$$

- ... even though $f(x)>g(x)$ everywhere.

Handy Tool: Order Notation

- Idea: Don't try to produce specific functions that specify size, but rather families of similar functions.
- Say something like " f is bounded by g if it is in g 's family."
- For any function $g(x)$, the functions $2 g(x), 1000 g(x)$, or for any $K>$ $0, K \cdot g(x)$, all have the same "shape". So put all of them into g 's family.
- Any function $h(x)$ such that $h(x)=K \cdot g(x)$ for $x>M$ (for some constant M) has g 's shape "except for small values." So put all of these in g^{\prime} s family.
- If we want upper limits, throw in all functions that are everywhere \leq some other member of g 's family. Call this family $O(g)$ or $O(g(n))$.
- Or, if we want lower limits, throw in all functions that are everywhere \geq some other member of g 's family. Call this family $\Omega(g)$.
- Finally, define $\Theta(g)=O(g) \cap \Omega(g)$-the set of functions bracketed by members of g 's family.

Big Omega

- Goal: Specify bounding from below:

- Here, $f^{\prime}(x) \geq \frac{1}{2} g(x)$ as long as $x>1$,
- So $f^{\prime}(x)$ is in g^{\prime} s lower-bound family, written

$$
f^{\prime}(x) \in \Omega(g(x)),
$$

- ... even though $f(x)<g(x)$ everywhere.
- In fact, we also have $f^{\prime}(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$ and so we can also write

Last modified: Mon Oct 6 16:08:02 2008

$$
f(x), f^{\prime}(x) \in \Theta(g(x)) .
$$

Using the Notation

- Can use this order notation for any kind of real-valued function.
- We will use them to describe cost functions. Example:

```
/** Find position of X in list L. Return -1 if not found */
int find (List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals (L.head)) return c;
    return -1;
}
```

- Choose representative operation: number of . equals tests.
- If N is length of L, then loop does at most N tests: worst-case time is N tests.
- In fact, total \# of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is $O(N)$, regardless of units used to measure.
- Use $N>M$ provision (in defn. of $O(\cdot)$) to handle empty list.

Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- $N=$ problem size

Time $(\mu \mathrm{sec})$ for	Max N Possible in			
problem size N	1 second	1 hour	1 month	1 century
$\lg N$	10^{300000}	$10^{1000000000}$	$10^{8 \cdot 10^{11}}$	$10^{9 \cdot 10^{14}}$
N	10^{6}	$3.6 \cdot 10^{9}$	$2.7 \cdot 10^{12}$	$3.2 \cdot 10^{15}$
$N \lg N$	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$6.9 \cdot 10^{13}$
N^{2}	1000	60000	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^{7}$
N^{3}	100	1500	14000	150000
2^{N}	20	32	41	51

Why It Matters

- Computer scientists often talk as if constant factors didn't matter at all, only the difference of $\Theta(N)$ vs. $\Theta\left(N^{2}\right)$.
- In reality they do, but we still have a point: at some point, constants get swamped.

n	$16 \lg n$	\sqrt{n}	n	$n \lg n$	n^{2}	n^{3}	2^{n}
2	16	1.4	2	2	4	8	4
4	32	2	4	8	16	64	16
8	48	2.8	8	24	64	512	256
16	64	4	16	64	256	4,096	65,636
32	80	5.7	32	160	1024	32,768	4.2×10^{9}
64	96	8	64	384	4,096	262,144	1.8×10^{19}
128	112	11	128	896	16,384	2.1×10^{9}	3.4×10^{38}
\vdots							
1,024	160	32	1,024	10,240	1.0×10^{6}	1.1×10^{9}	1.8×10^{308}
\vdots							
2^{20}	320	1024	1.0×10^{6}	2.1×10^{7}	1.1×10^{12}	1.2×10^{18}	$6.7 \times 10^{315,652}$

Effect of Nested Loops

- Nested loops often lead to polynomial bounds:

```
for (int i = 0; i < A.length; i += 1)
    for (int j = 0; j < A.length; j += 1)
        if (i != j && A[i] == A[j])
            return true
return false;
```

- Clearly, time is $O\left(N^{2}\right)$, where $N=$ A.length. Worst-case time is $\Theta\left(N^{2}\right)$.
- Loop is inefficient though:

$$
\begin{aligned}
& \text { for (int } i=0 ; i<A . \text { length; } i+=1 \text {) } \\
& \text { for (int } j=i+1 ; j<A . l e n g t h ; j+=1) \\
& \text { if (A[i] ==A[j]) return true; } \\
& \text { return false; }
\end{aligned}
$$

- Now worst-case time is proportional to

$$
N-1+N-2+\ldots+1=N(N-1) / 2 \in \Theta\left(N^{2}\right)
$$

(so asymptotic time unchanged by the constant factor).
/** True X iff is an element of $\mathrm{S}[\mathrm{L}$. . U]. Assumes

* S in ascending order, $0<=\mathrm{L}<=\mathrm{U}-1<$ S.length. */
boolean isIn (String X, String[] S, int L, int U) \{
if (L > U) return false;
int $M=(L+U) / 2$;
int direct $=\mathrm{X}$.compareTo ($\mathrm{S}[\mathrm{M}]$);
if (direct < 0) return isIn (X, S, L, M-1);
else if (direct > 0) return isIn (X, S, M+1, U);
else return true;
\}
- Here, worst-case time, $C(D)$, (as measured by \# of string comparisons), depends on size $D=U-L+1$.
- We eliminate $S[M]$ from consideration each time and look at half the rest. Assume $D=2^{k}-1$ for simplicity, so:

$$
\begin{aligned}
C(D) & = \begin{cases}0, & \text { if } D \leq 0, \\
1+C((D-1) / 2), & \text { if } D>0 .\end{cases} \\
& =\underbrace{1+1+\ldots+1}_{k}+0 \\
& =k=\lceil\lg D\rceil \in \Theta(\lg D)
\end{aligned}
$$

Recursion and Recurrences: Fast Growth

- Silly example of recursion:
/** True iff X is a substring of $\mathrm{S} * /$
boolean occurs (String S, String X) \{
if (S.equals (X)) return true;
if (S.length () <= X.length ()) return false;
return
occurs (S.substring (1), X) ||
occurs (S.substring (0, S.length ()-1), X);
\}
- In the worst case, both recursive calls happen.
- Consider a fixed size for X, say N_{0}.
- Define $C(N)$ to be the worst-case cost of occurs(S,X) for S of length N, measured in \# of calls to occurs. Then

$$
C(N)= \begin{cases}1, & \text { if } N \leq N_{0} \\ 2 C(N-1) & \text { if } N>N_{0}\end{cases}
$$

- So $C(N)$ grows exponentially:

$$
C(N)=2 C(N-1)=2 \cdot 2 C(N-2)=\ldots=\underbrace{2 \cdot 2 \cdots 2 \cdot 1=2^{N-N_{0}} \in \Theta\left(2^{N}\right) \text {) } n(N)}_{N-N_{0}}
$$

Last modified: Mon Oct 6 16:08:02 2008
CS61B: Lecture \#15 14

Another Typical Pattern: Merge Sort

List sort (List L) \{
if (L.length () < 2) return L;
Split L into L0 and L1 of about equal size; LO = sort (LO); L1 = sort (L1); return Merge of L0 and L1 \}

Merge ("combine into a single, ordered list") takes time proportional to size of its result.

- Assuming that size of L is $N=2^{k}$, worst-case cost function, $C(N)$, counting just merge time ($\propto \#$ items merged):

$$
\begin{aligned}
C(N) & = \begin{cases}1, & \text { if } N<2 ; \\
2 C(N / 2)+N, & \text { if } N \geq 2 .\end{cases} \\
& =2(2 C(N / 4)+N / 2)+N \\
& =4 C(N / 4)+N+N \\
& =8 C(N / 8)+N+N+N \\
& =N \cdot 1+\underbrace{N+N+N}_{k=\lg N} \\
& =N+N \lg N \in \Theta(N \lg N)
\end{aligned}
$$

- In general, $\Theta(N \lg N)$ for arbitrary N (not just 2^{k}).

Amortization: Expanding Vectors

- When using array for expanding sequence, best to double size of array to grow it. Here's why.
- If array is size s, doubling its size and moving s elements to the new array takes time $\propto 2 s$.
- Cost of inserting N items into array, doubling size as needed, starting with array size 1:

To Insert	Resizing	Cumulative	Resizing Cost	Array Size
Item \#	Cost	Cost	per Item	After Insertions
1	0	0	0	1
2	2	2	1	2
3 to 4	4	6	1.5	4
5 to 8	8	14	1.75	8
\vdots	\vdots	\vdots	\vdots	\vdots
$2^{m}+1$ to 2^{m+1}	2^{m+1}	$2^{m+2}-2$	≈ 2	2^{m+1}

- If we spread out (amortize) the cost of resizing, we average about 2 time units on each item: "amortized insertion time is 2 units."
- So even though worst-case time for adding one element to array of N elements is $2 N$, time to add N elements is $\Theta(N)$, not $\Theta\left(N^{2}\right)$.

Last modified: Mon Oct 6 16:08:02 2008
CS61B: Lecture \#15 17

