JuUnit 4.0 in 10 minutes
Gunjan Doshi
Instrumental Services Inc

Abstract: JUnit needs no introduction. Originally written by Kent Beck and Erich
Gamma, the software is the preferred tool of choice for developer testing. Now, the
team of Kent Beck and Erich Gamma is back again with a new version of JUnit - 4.0.
This quick reference guide is for programmers and testers looking to migrate to JUnit
4.0. If you have a flight to catch or do not want to spend 10 minutes going through the
guide, just jump to the summary section and you will learn enough.

For the purpose of this article, | will call JUnit 3.8.1 and its predecessors as the old
JUnit and JUnit 4.0 as the new JUnit.

Table of contents:
This guide contains the following sections:

Old JUnit revisited
Cut the chase to JUnit 4.0
Run the tests
Set up and tear down
One-time set up and tear down
Expecting exceptions
Other Annotations
0 Ignoring a test
o0 Timing out a test

e Summary

Old JUnit revisited

Using the old JUnit, let us write a test, which verifies the availability of a book in the
library.

package example, junitold:
import junit.framework.TestCase:
public class LibraryTest extends TestCase { 1. Class must infierit from TestCase

public void testBookkvailsbleInLibrary(j{ 2. O JlUnit requires Test metfiods
Library library = new Library(): to be prafixved with ‘test’
hoolean result =
library.checkivailabilicyByTitle ("Webster's Dictionary™):
gssartEguals ("Our Library should have the scandard Dictionacy™,
true,
cesule)

3. Usze one of the several assert methods available

To summarize the steps:
e We extend from junit.framework.TestCase.
¢ We name the test methods with a prefix of “test’.

Copyright 2005-06 Instrumental Services Inc.
Version 1.1 June 15, 2005
Page 1 of 6

http://www.gunjandoshi.com/
http://www.instrumentalservices.com/
http://www.junit.org/
http://www.threeriversinstitute.org/Kent Beck.htm
http://www.javapolis.com/confluence/display/JP04/Erich+Gamma
http://www.javapolis.com/confluence/display/JP04/Erich+Gamma
http://www.threeriversinstitute.org/Kent Beck.htm
http://www.javapolis.com/confluence/display/JP04/Erich+Gamma

e We validate conditions using one of the several assert methods.

Cut the chase to JUnit 4.0
Let us write the same test using JUnit 4.0.

package example.junitd:

import org.junic.Testc;
import static org.junit.,Assert. assectEgquals:
import Jjunit.framework.JUnicd4Tesclhdapter:

public class LibraryTesti{

ATest public void bookivailableInLibracy(){
Library library = new Library():
hoolean result = library.checkdvailabilityByTicle ("Webster's Dictionacy™]:
g2zgaptEguals ("Our Library should have the standard Dicclonacy™,
true,
result) :
H

public static junic.framework.Test suice () {
return new JUnitdTesthdapter (LibracyTest.class)
i
H

When | upgrade to a new version | look for tasks, | do not have to do anymore. Here is
the same code with notes telling us what not to do anymore.

package exomple.junit4d;

import org.junic.Testc:
import statiec org.junit.,Assert.assectEquals:
import junit.framework.JUnicd4Tescidaprer:

Do not emport TestCase.

public clags LibraryTest{ Do notextend from TestCase. A normal elas: daclavation.

#Test public void bookhvailableInLibracy(){ Do not prefix the test method with ‘test’
Library library = new Libraryi):
hoolean result = library.checkdvailabilityByTicle ("Webster's Dictionacy™]):
2sgaptEguals ("Our Library should have the standard Diccionacy™,
true,
result) :
+

public static junic.framework.Test sulce (] {
return new JUnitdTestAdapter (LibracyTest.class)
+

To summarize:
e We do not extend from junit.framework.TestCase.
e We do not prefix the test method with ‘test’.

Next, | look for new tasks | must always do. The diagram below summarizes what we
must do according to the new JUnit standards:

Copyright 2005-06 Instrumental Services Inc.
Version 1.1 June 15, 2005
Page 2 of 6

package exemple.junitd:

import org.junic.Teat; i JImport Test annotation
import static org.junic.Assertc.assectEguals; = .rrrr_r'-».' static assertTquals
import junit.framework. JUnic4Tescidapoer; 2. Import JUnitgTest Adapter
public class Libracyrest] 4- To declare a method as a test method

wse the "@Test” annotation

ATest public void bookivailableInLibracy(){
Library library = new Libraryi():
hoolean result = library.checkdvailabilityByTicle ("Webster's Dictionacy™]:
g2zgaptEguals ("Our Library should have the standard Dicclonacy™,
true,

5 Use one of the assert methods
resule)

}

public static junitc.framework.Tesat suite () |

return new JUnitdTesthdapter (LibracyTest.class)
1 &, Unitg TestAdapter 15 regquired fo run Uity fests with the old
] Junit runner

To summarize:

e Use a normal class and not extend from junit.framework.TestCase.

e Use the Test annotation to mark a method as a test method. To use the Test
annotation, we need to import org.junit.Test

e Use one of the assert methods. There is no difference between the old assert
methods and the new assert methods. An easy way to use the assert method is to
do a static import as shown by point 2 in the code above.

e Run the test using JUnit4TestAdapter. If you want to learn more about
JUnit4TestAdapter, keep reading ahead.

Run the tests

Unfortunately, our favorite development environments are still unaware of JUnit 4.
JUnit4Adapter enables compatibility with the old runners so that the new JUnit 4 tests
can be run with the old runners. The suite method in the diagram above illustrates the
use of JUnit4Adapter.

Alternatively, you can use the JUnitCore class in the org.junit.runner package. JUnit 4
runner can also run tests written using the old JUnit. To run the tests using the
JUnitCore class via the command line, type:

jJava org.junit.runner.JUnitCore LibraryTest

Set up and tear down
The new JUnit provides two new annotations for set up and tear down:

e (@Before: Method annotated with @Before executes before every test.
o @After: Method annotated with @After executes after every test.

Here is the code that demonstrates the use of @Before and @After:
Copyright 2005-06 Instrumental Services Inc.

Version 1.1 June 15, 2005
Page 3 of 6

backage example.junit4:

import org.junit.After:

import org.junit.Before; .'._.r:l:ll_;:l._?:l: 'B-r:.fﬂﬂ-r', Test, After annotatrons
import org.junit.Test;

import static org.junic. Assert. assartEquals:

import Jjunit.framework.JUnicd4TescAdaprer:

public clage LibraryTestUzingSetupi
private Libracy libracy:

dBefore public veoid runBeforeEachTest(){ o Set up mathod using &Before annsotation.
Library = new Library(): Method can be named :I.II'IJlfr'.'I?!-cll.

}

iTe=st public woid bookdvailableInLibrarcy(]{
hoolean result = library.checkiAvailabilityByTitle ("Uebster's Dictionacy®):
esaprtEguals ("Our Library should have the standard Dictclonary™,
true,
resule) ;

3. Wrilte the test
i

datcer public void rundfrerEachTesc ()4
library = null:;

4. Tear down U the Li..-l_,r'r.u anmnotation.
]

public static junic.framework.Test suice(] {
return new JUnitd4Teschdaprer (LibraryTesclzingSecup. class) :
} 5. Use of JUnitgTest Adapter to allow this test to be
3 run with eld runners

Two features of @Before and @After annotations that are helpful to learn:

e You can have any number of @Before and @After as you need.

e |tis possible to inherit the @Before and @After methods. New JUnit executes
@Before methods in superclass before the inherited @Before methods. @After
methods in subclasses are executed before the inherited @After methods.

One-time set up and tear down

The new JUnit4 provides @BeforeClass and @AfterClass annotations for one-time set
up and tear down. This is similar to the TestSetup class in the old junit.extensions
package, which ran setup code once before all the tests and cleanup code once after
all the tests.

Here is the code that demonstrates @BeforeClass and @AfterClass:

Copyright 2005-06 Instrumental Services Inc.
Version 1.1 June 15, 2005
Page 4 of 6

package example.junicd:

import org.junic.hfterClass;

import org.junic.BeforeClass:

import org.junic.Tesc:

import static org.junit.Assert.assertFalse;
import statiec org.junic.Assert.assectTrue:
import junic.framework.JUnicd4Testhdaprer:

publie clags LibraryTestlUsingBEelforeClass{
private Library librarcy:
FEeforeClass public void runOnceBeforsil lTests () {
library = Library.pawInstance(l10020) : Ths Eﬂejhr'sﬂﬁi:s method connects &
11bEacy. connecTToCantralLibrary () 2 synchronizes the data with the central
1 ibrary. synchronizeDatavichCencrallibrary(); o oY once before all the tests.

)

ATesc public veoid bookNochwailableInLibracy(){
assertFalse("Cur Library should not hewe this old book®,
library.checkivailabilitvEyTicle ("Really Old Baok"™)):
H

[Tezr publie veid bookivailableInCencrallibeary()
assertTrua("Central Library should have this book®™,
library.checkivailabilityInCentrallibracy ("Really Qld Book"™)):
H

fhafrerClass public void cunAfcecAllTescs(){

library.disconnectFromCentrallibrary () ; This @AfterClass metiod disconnects from

' the canitval [iby ary dfi‘kr all the tezts are vumn.

public static Jjunit.framework.Test suite()
réturn new JUnitd4Testidapter (LibraryTesctUsingBeforedlass . clags]) @
}

Unlike @Before and @After annotations, only one set of @BeforeClass and @AfterClass
annotations are allowed.

Expecting exceptions
The new JUnit makes checking for exceptions very easy. The @Test annotation takes a

parameter, which declares the type of Exception that should be thrown. The code
below demonstrates this:

package example.junitd:

import Jjunit.framewvork.JUnic4TestAidapter:
Iulpu rt org.junic.Tesc;

public class LibraryExpecationTest{

ATest [expected=BookNotAvailableException.class] JTest attribute takes .
public void bookNotAvailablelnLibrary() ! a parameter that specifias
Library library = new Library(): the excpected axcaption
library.checkivailabilicyEYTit le ("Some book that doss not exisc™):
b

public static junic.framework.Tesc suite) {
return new JUnitd4Testhdapter (LibracyExpecationTest.class)
H

Copyright 2005-06 Instrumental Services Inc.
Version 1.1 June 15, 2005
Page 5 of 6

In the code above, bookNotAvailablelnLibrary is a test, which passes only if
BookNotAvailableException is thrown. The test fails if no exception is thrown. Test
also fails if a different exception is thrown.

Other Annotations

Ignoring a test

The @Ignore annotation tells the runner to ignore the test and report that it was not
run. You can pass in a string as a parameter to @lgnore annotation that explains why
the test was ignored. E.g. The new JUnit will not run a test method annotated with
@Ignore(“Database is down”) but will only report it. The version of JUnit4Adapter, |
used, did not work with @lgnore annotation. Kent Beck has informed me that the next
version of JUnitAdapter will fix this problem.

Timing out a test

You can pass in a timeout parameter to the test annotation to specify the timeout
period in milliseconds. If the test takes more, it fails. E.g. A method annotated with
@Test (timeout=10) fails if it takes more than 10 milliseconds.

Finally, 1 would like to thank Kent Beck for taking the time to demonstrate and teach
the new JUnit to me.

Summary

To summarize the new JUnit style:
1. It Requires JDK 5 to run.
2. Test classes do not have to extend from junit.framework.TestCase.
3. Test methods do not have to be prefixed with ‘test’.
4. There is no difference between the old assert methods and the new assert
methods.

5. Use @Test annotations to mark a method as a test case.
6. @Before and @After annotations take care of set up and tear down.
7. @BeforeClass and @AfterClass annotations take care of one time set up and one

time tear down.

8. @Test annotations can take a parameter for timeout. Test fails if the test takes
more time to execute.

9. @Test annotations can take a parameter that declares the type of exception to
be thrown.

10. JUnit4Adapter enables running the new JUnit4 tests using the old JUnit
runners.

11. Old JUnit tests can be run in the new JUnit4 runner.

Copyright 2005-06 Instrumental Services Inc.
Version 1.1 June 15, 2005
Page 6 of 6

	JUnit 4.0 in 10 minutes�Gunjan Doshi �Instrumental Services
	Table of contents:
	Old JUnit revisited
	Cut the chase to JUnit 4.0
	Run the tests
	Set up and tear down
	One-time set up and tear down
	Expecting exceptions
	Other Annotations
	Ignoring a test
	Timing out a test
	Summary

