
JUnit 4.0 in 10 minutes 
Gunjan Doshi  

Instrumental Services Inc
Abstract: JUnit needs no introduction. Originally written by Kent Beck and Erich 
Gamma, the software is the preferred tool of choice for developer testing. Now, the 
team of Kent Beck and Erich Gamma is back again with a new version of JUnit – 4.0. 
This quick reference guide is for programmers and testers looking to migrate to JUnit 
4.0. If you have a flight to catch or do not want to spend 10 minutes going through the 
guide, just jump to the summary section and you will learn enough. 
 
For the purpose of this article, I will call JUnit 3.8.1 and its predecessors as the old 
JUnit and JUnit 4.0 as the new JUnit.  

Table of contents: 
This guide contains the following sections: 
 
• Old JUnit revisited 
• Cut the chase to JUnit 4.0 
• Run the tests 
• Set up and tear down 
• One-time set up and tear down 
• Expecting exceptions 
• Other Annotations 

o Ignoring a test 
o Timing out a test 

• Summary 

Old JUnit revisited 
Using the old JUnit, let us write a test, which verifies the availability of a book in the 
library. 

 
To summarize the steps: 
• We extend from junit.framework.TestCase. 
• We name the test methods with a prefix of ‘test’. 

Copyright 2005-06 Instrumental Services Inc. 
Version 1.1 June 15, 2005 

Page 1 of 6 

http://www.gunjandoshi.com/
http://www.instrumentalservices.com/
http://www.junit.org/
http://www.threeriversinstitute.org/Kent Beck.htm
http://www.javapolis.com/confluence/display/JP04/Erich+Gamma
http://www.javapolis.com/confluence/display/JP04/Erich+Gamma
http://www.threeriversinstitute.org/Kent Beck.htm
http://www.javapolis.com/confluence/display/JP04/Erich+Gamma


• We validate conditions using one of the several assert methods. 

Cut the chase to JUnit 4.0 
Let us write the same test using JUnit 4.0. 
 

 
When I upgrade to a new version I look for tasks, I do not have to do anymore. Here is 
the same code with notes telling us what not to do anymore. 
 

 
 
To summarize: 
• We do not extend from junit.framework.TestCase. 
• We do not prefix the test method with ‘test’. 
 
Next, I look for new tasks I must always do. The diagram below summarizes what we 
must do according to the new JUnit standards: 
 

Copyright 2005-06 Instrumental Services Inc. 
Version 1.1 June 15, 2005 

Page 2 of 6 



 
 
To summarize: 
• Use a normal class and not extend from junit.framework.TestCase. 
• Use the Test annotation to mark a method as a test method. To use the Test 

annotation, we need to import org.junit.Test 
• Use one of the assert methods. There is no difference between the old assert 

methods and the new assert methods. An easy way to use the assert method is to 
do a static import as shown by point 2 in the code above. 

• Run the test using JUnit4TestAdapter. If you want to learn more about 
JUnit4TestAdapter, keep reading ahead. 

Run the tests 
Unfortunately, our favorite development environments are still unaware of JUnit 4. 
JUnit4Adapter enables compatibility with the old runners so that the new JUnit 4 tests 
can be run with the old runners. The suite method in the diagram above illustrates the 
use of JUnit4Adapter. 
 
Alternatively, you can use the JUnitCore class in the org.junit.runner package. JUnit 4 
runner can also run tests written using the old JUnit.  To run the tests using the 
JUnitCore class via the command line, type: 
 
java org.junit.runner.JUnitCore LibraryTest 
 

Set up and tear down 
The new JUnit provides two new annotations for set up and tear down: 
 
• @Before: Method annotated with @Before executes before every test. 
• @After: Method annotated with @After executes after every test. 
 
Here is the code that demonstrates the use of @Before and @After: 
 

Copyright 2005-06 Instrumental Services Inc. 
Version 1.1 June 15, 2005 

Page 3 of 6 



 
 
 
Two features of @Before and @After annotations that are helpful to learn: 
• You can have any number of @Before and @After as you need.  
• It is possible to inherit the @Before and @After methods. New JUnit executes 

@Before methods in superclass before the inherited @Before methods. @After 
methods in subclasses are executed before the inherited @After methods.   

One-time set up and tear down 
The new JUnit4 provides @BeforeClass and @AfterClass annotations for one-time set 
up and tear down. This is similar to the TestSetup class in the old junit.extensions 
package, which ran setup code once before all the tests and cleanup code once after 
all the tests.  
 
Here is the code that demonstrates @BeforeClass and @AfterClass: 
 

Copyright 2005-06 Instrumental Services Inc. 
Version 1.1 June 15, 2005 

Page 4 of 6 



 
 
Unlike @Before and @After annotations, only one set of @BeforeClass and @AfterClass 
annotations are allowed. 

Expecting exceptions 
The new JUnit makes checking for exceptions very easy. The @Test annotation takes a 
parameter, which declares the type of Exception that should be thrown. The code 
below demonstrates this: 
 

 

Copyright 2005-06 Instrumental Services Inc. 
Version 1.1 June 15, 2005 

Page 5 of 6 



Copyright 2005-06 Instrumental Services Inc. 
Version 1.1 June 15, 2005 

Page 6 of 6 

In the code above, bookNotAvailableInLibrary is a test, which passes only if 
BookNotAvailableException is thrown. The test fails if no exception is thrown. Test 
also fails if a different exception is thrown. 

Other Annotations 

Ignoring a test 
The @Ignore annotation tells the runner to ignore the test and report that it was not 
run. You can pass in a string as a parameter to @Ignore annotation that explains why 
the test was ignored. E.g. The new JUnit will not run a test method annotated with 
@Ignore(“Database is down”) but will only report it. The version of JUnit4Adapter, I 
used, did not work with @Ignore annotation. Kent Beck has informed me that the next 
version of JUnitAdapter will fix this problem. 

Timing out a test 
You can pass in a timeout parameter to the test annotation to specify the timeout 
period in milliseconds. If the test takes more, it fails. E.g. A method annotated with 
@Test (timeout=10) fails if it takes more than 10 milliseconds. 
 
Finally, I would like to thank Kent Beck for taking the time to demonstrate and teach 
the new JUnit to me. 

Summary 
To summarize the new JUnit style: 

1. It Requires JDK 5 to run. 
2. Test classes do not have to extend from junit.framework.TestCase. 
3. Test methods do not have to be prefixed with ‘test’. 
4. There is no difference between the old assert methods and the new assert 

methods. 
5. Use @Test annotations to mark a method as a test case. 
6. @Before and @After annotations take care of set up and tear down. 
7. @BeforeClass and @AfterClass annotations take care of one time set up and one 

time tear down. 
8. @Test annotations can take a parameter for timeout. Test fails if the test takes 

more time to execute. 
9. @Test annotations can take a parameter that declares the type of exception to 

be thrown. 
10. JUnit4Adapter enables running the new JUnit4 tests using the old JUnit 

runners. 
11. Old JUnit tests can be run in the new JUnit4 runner. 


	JUnit 4.0 in 10 minutes�Gunjan Doshi �Instrumental Services 
	Table of contents:
	Old JUnit revisited
	Cut the chase to JUnit 4.0
	Run the tests
	Set up and tear down
	One-time set up and tear down
	Expecting exceptions
	Other Annotations
	Ignoring a test
	Timing out a test
	Summary


