
CS61B Lecture #9: Interfaces and Abstract Classes

Midterm moved: The midterm is now Monday, 15 October at 6:00PM
in 2050 VLSB. As usual, anyone needing a different time or other ac-
commodation should let me know a week in advance.

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 1

Abstract Methods and Classes

• Instance method can be abstract: No body given; must be supplied
in subtypes.

• One good use is in specifying a pure interface to a family of types:

/** A drawable object. */

public abstract class Drawable { // "abstract" = "can’t say new Drawable"

/** Expand THIS by a factor of SIZE */

public abstract void scale (double size);

/** Draw THIS on the standard output. */

public abstract void draw ();

}

Now a Drawable is something that has at least the operations scale
and draw on it. Can’t create a Drawable because it’s abstract—in
particular, it has two methods without any implementation.

• BUT, we can write methods that operate on Drawables:

void drawAll (Drawable[] thingsToDraw) {

for (Drawable thing : thingsToDraw)

thing.draw ();

}

• But draw has no implementation! How can this work?
Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 2

Concrete Subclasses

• Can define kinds of Drawables that are non-abstract. To do so, must
supply implementations for all methods:
public class Rectangle extends Drawable {

public Rectangle (double w, double h) { this.w = w; this.h = h; }

public void scale (double size) { w *= size; h *= size; }

public void draw () { draw a w x h rectangle }

private double w,h;

}

public class Circle extends Drawable {

public Circle (double rad) { this.rad = rad; }

public void scale (double size) { rad *= size; }

public void draw () { draw a circle with radius rad }

double rad;

}

Any Circle or Rectangle is a Drawable.

• So, writing

Drawable[] things = { new Rectangle (3, 4), new Circle (2) };

drawAll (things);

draws a 3 × 4 rectangle and a circle with radius 2.

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 3

Interfaces

• In generic use, an interface is a “point where interaction occurs
between two systems, processes, subjects, etc.” (Concise Oxford
Dictionary).

• In programming, often use the term to mean a description of this
generic interaction, specifically, a description of the functions or
variables by which two things interact.

• Java uses the term to refer to a slight variant of an abstract class
that contains only abstract methods (and static constants).

• Idea is to treat Java interfaces as the public specifications of data
types, and classes as their implementations:

public interface Drawable {

void scale (double size); // Automatically public abstract.

void draw ();

}

public class Rectangle implements Drawable { ... }

• Interfaces are automatically abstract: can’t say new Drawable();
can say new Rectangle(...).

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 4

Multiple Inheritance

• Can extend one class, but implement any number of interfaces.

• Contrived Example:

interface Readable { | void copy (Readable r,

Object get (); | Writable w)

} | {

| w.put (r.get ());

interface Writable { | }

void put (Object x); |

} |

|

class Source implements Readable { | class Sink implements Writable {

public Object get () { ... } | public void put (Object x) { ... }

} | }

class Variable implements Readable, Writable {

public Object get () { ... }

public void put (Object x) { ... }

}

• The first argument of copy can be a Source or a Variable. The
second can be a Sink or a Variable.

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 5

Review: Higher-Order Functions

• In Scheme, you had higher-order functions like this (adapted from
SICP)

(define (map proc items)

; function list

(if (null? items)

nil

(cons (proc (car items)) (map proc (cdr items)))))

and could write

(map abs (list -10 2 -11 17))

====> (10 2 11 17)

(map (lambda (x) (* x x)) (list 1 2 3 4))

====> (1 4 9 16)

• Java does not have these directly, but can use abstract classes or
interfaces and subtyping to get the same effect (with more writing)

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 6

Map in Java

/** Function with one integer argument */ | IntList map (IntUnaryFunction proc,

| IntList items) {

public interface IntUnaryFunction { | if (items == null)

int apply (int x); | return null;

} | else return new IntList (

| proc.apply (items.head),

| map (proc, items.tail)

|);

| }

• It’s the use of this function that’s clumsy. First, define class for
absolute value function; then create an instance:

class Abs implements IntUnaryFunction {

public int apply (int x) { return Math.abs (x); }

}

--

map (new Abs (), some list);

• Or, we can write a lambda expression (sort of):

map (new IntUnaryFunction () {

public int apply (int x) { return x*x; }

}, some list);
Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 7

A Puzzle

class A {

void f () { System.out.println ("A.f"); }

void g () { f (); /* or this.f() */ }

//static void g (A y) { y.f(); }

}

| class B extends A {

| void f () {

| System.out.println ("B.f");

| }

| }

class C {

static void main (String[] args) {

B aB = new B ();

h (aB);

}

static void h (A x) { x.g() }

//static void h (A x) { A.g(x); } x.g(x) also legal here
}

1. What is printed?

2. What if we made g static?

3. What if we made f static?

4. What if f were not defined in A?

Choices:

a. A.f

b. B.f

c. Some kind of error

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 8

Answer to Puzzle

1. Executing java C prints , because

1. C.main calls h and passes it aB, whose dynamic type is B.

2. h calls x.g(). Since g is inherited by B, we execute the code for
g in class A.

3. g calls this.f (). Now this contains the value of h’s argument,
whose dynamic type is B. Therefore, we execute the definition of
f that is in B.

4. In calls to f, in other words, static type is ignored in figuring out
what method to call.

2. If g were static, we see ; selection of f still depends on dynamic
type of this.

3. If f were static, would print because then selection of f would
depend on static type of this, which is A.

4. If f were not defined in A, we’d get .

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 9

Example: Designing a Class

Problem: Want a class that represents histograms, like this one:

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Analysis: What do we need from it? At least:

• Specify buckets and limits.

• Accumulate counts of values.

• Retrieve counts of values.

• Retrieve numbers of buckets and other initial parameters.

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 10

Specification Seen by Clients

• The clients of a module (class, program, etc.) are the programs or
methods that use that module’s exported definitions.

• In Java, intention is that exported definitions are designated public.

• Clients are intended to rely on specifications, not code.

• Syntactic specification: method and constructor headers—syntax
needed to use.

• Semantic specification: what they do. No formal notation, so use
comments.

– Semantic specification is a contract.

– Conditions client must satisfy (preconditions, marked “Pre:” in
examples below).

– Promised results (postconditions).

– Design these to be all the client needs!

– Exceptions communicate errors, specifically failure to meet pre-
conditions.

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 11

Histogram Specification and Use

/** A histogram of floating-point values */

public interface Histogram {

/** The number of buckets in THIS. */

int size ();

/** Lower bound of bucket #K. Pre: 0<=K<size(). */

double low (int k);

/** # of values in bucket #K. Pre: 0<=K<size(). */

int count (int k);

/** Add VAL to the histogram. */

void add (double val);

}

Sample output:

>= 0.00 | 10

>= 10.25 | 80

>= 20.50 | 120

>= 30.75 | 50

void fillHistogram (Histogram H,

Scanner in)

{

while (in.hasNextDouble ())

H.add (in.nextDouble ());

}

void printHistogram (Histogram H) {

for (int i = 0; i < H.size (); i += 1)

System.out.printf

(">=%5.2f | %4d%n",

H.low (i), H.count (i));

}

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 12

An Implementation

public class FixedHistogram implements Histogram {

private double low, high; /* From constructor*/

private int[] count; /* Value counts */

/** A new histogram with SIZE buckets recording values >= LOW and < HIGH. */

public FixedHistogram (int size, double low, double high)

{

if (low >= high || size <= 0) throw new IllegalArgumentException ();

this.low = low; this.high = high;

this.count = new int[size];

}

public int size () { return count.length; }

public double low (int k) { return low + k * (high-low)/count.length; }

public int count (int k) { return count[k]; }

public void add (double val) {

int k = (int) ((val-low)/(high-low) * count.length);

if (k >= 0 && k < count.length) count[k] += 1;

}

}

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 13

Let’s Make a Tiny Change

Don’t require a priori bounds:

class FlexHistogram implements Histogram {

/** A new histogram with SIZE buckets. */

public FlexHistogram (int size) {

?

}

// What needs to change?

}

• How would you do this? Profoundly changes implementation.

• But clients (like printHistogram and fillHistogram) still work with
no changes.

• Illustrates the power of separation of concerns.

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 14

Implementing the Tiny Change

• Pointless to pre-allocate the count array.

• Don’t know bounds, so must save arguments to add.

• Then recompute count array “lazily” when count(· · ·) called.

• Invalidate count array whenever histogram changes.

class FlexHistogram implements Histogram {

private List<Double> values = ...; // Java library type (later)

int size;

private int[] count;

public FlexHistogram (int size) { this.size = size; this.count = null; }

public void add (double x) { count = null; values.add (x); }

public int count (int k) {

if (count == null) { compute count from values here. }

return count[k];

}

}

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 15

Advantages of Procedural Interface over Visible Fields

By using public method for count instead of making the array count

visible, the “tiny change” is transparent to clients:

• If client had to write myHist.count[k], would mean

“The number of items currently in the k
th bucket of histogram

myHist (and by the way, there is an array called count in
myHist that always holds the up-to-date count).”

• Parenthetical comment useless to the client.

• But if count array had been visible, after “tiny change,” every use
of count in client program would have to change.

• So using a method for the public count decreases what client has to
know, and (therefore) has to change.

Last modified: Mon Oct 22 15:34:03 2007 CS61B: Lecture #9 16

	CS61B Lecture #9: Interfaces and Abstract Classes
	Abstract Methods and Classes
	Concrete Subclasses
	Interfaces
	Multiple Inheritance
	Review: Higher-Order Functions
	Map in Java
	A Puzzle
	Answer to Puzzle
	Example: Designing a Class
	Specification Seen by Clients
	Histogram Specification and Use
	An Implementation
	Let's Make a Tiny Change
	Implementing the Tiny Change
	Advantages of Procedural Interface over Visible Fields

