
CS61B Lecture #37

Administrative:

• Last week’s homework due Thursday at 9:00AM.

Today’s Readings: Graph Structures: DSIJ, Chapter 12
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Why Graphs?

• For expressing non-hierarchically related items

• Examples:

– Networks: pipelines, roads, assignment problems

– Representing processes: flow charts, Markov models

– Representing partial orderings: PERT charts, makefiles
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Some Terminology

• A graph consists of

– A set of nodes (aka vertices)

– A set of edges: pairs of nodes.

– Nodes with an edge between are adjacent.

– Depending on problem, nodes or edges may have labels (or weights)

• Typically call node set V = {v0, . . .}, and edge set E.

• If the edges have an order (first, second), they are directed edges,
and we have a directed graph (digraph), otherwise an undirected
graph.

• Edges are incident to their nodes.

• Directed edges exit one node and enter the next.

• A cycle is a path without repeated edges leading from a node back
to itself (following arrows if directed).

• A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Di-
rected Acyclic Graph—DAG.
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Some Pictures
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Trees are Graphs

• A graph is connected if there is a (possibly directed) path between
every pair of nodes.

• That is, if one node of the pair is reachable from the other.

• A DAG is a (rooted) tree iff connected, and every node but the root
has exactly one parent.

• A connected, acyclic, undirected graph is also called a free tree.
Free: we’re free to pick the root; e.g.,
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Examples of Use

• Edge = Connecting road, with length.

Detroit Chicago
200

• Edge = Must be completed before; Node label = time to complete.

Eat
1 hr

Sleep
8 hrs

• Edge = Begat

Martin George
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More Examples

• Edge = some relationship

potstickers John Mary
eats loves

• Edge = next state might be (with probability)

hat the cat in bed
0.60.4 0.4 0.1

0.9

• Edge = next state in state machine, label is triggering input. (Start
at s. Being in state 4 means “there is a substring ‘001’ somewhere in
the input”.)

s 2 3 4
0 0 1

0

1
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Representation

• Often useful to number the nodes, and use the numbers in edges.

• Edge list representation: each node contains some kind of list (e.g.,
linked list or array) of its successors (and possibly predecessors).

a b

c

1: a

(2,3) ()

2: b

(3) (1)

3: c

() (1,2)

• Edge sets: Collection of all edges. For graph above:

{(1, 2), (1, 3), (2, 3)}

• Adjacency matrix: Represent connection with matrix entry:
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Traversing a Graph

• Many algorithms on graphs depend on traversing all or some nodes.

• Can’t quite use recursion because of cycles.

• Even in acyclic graphs, can get combinatorial explosions:
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Treat 0 as the root and do recursive traversal down the two edges
out of each node: Θ(2N) operations!

• So typically try to visit each node constant # of times (e.g., once).
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General Graph Traversal Algorithm

COLLECTION OF VERTICES fringe;

fringe = INITIAL COLLECTION;
while (! fringe.isEmpty()) {

Vertex v = fringe.REMOVE HIGHEST PRIORITY ITEM();

if (! MARKED(v)) {

MARK(v);
VISIT(v);

For each edge (v,w) {

if (NEEDS PROCESSING(w))

Add w to fringe;

}

}

}

Replace COLLECTION OF VERTICES, INITIAL COLLECTION, etc.
with various types, expressions, or methods to different graph algo-
rithms.
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Example: Depth-First Traversal

Problem: Visit every node reachable from v once, visiting nodes fur-
ther from start first.

Stack<Vertex> fringe;

fringe = stack containing {v};
while (! fringe.isEmpty()) {

Vertex v = fringe.pop ();

if (! marked(v)) {

mark(v);
VISIT(v);
For each edge (v,w) {

if (! marked (w))

fringe.push (w);

}

}

}
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Depth-First Traversal Illustrated
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Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with
the edges.

• That is, order the nodes v0, v1, . . . such that vk is never reachable
from vk′ if k′ > k.

• Gmake does this. Also PERT charts.
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H
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[A,B,C,F,D,G,E,H], or
[A,C,B,D,F,E,G,H], or
[A,B,C,F,D,E,H,G], or

...

Set<Vertex> fringe;

fringe = set of all nodes with no predecessors;
while (! fringe.isEmpty()) {

Vertex v = fringe.removeOne ();

add v to end of result list;
For each edge (v,w) {

decrease predecessor count of w;

if (predecessor count of w == 0)

fringe.add (w);

}

}
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Topological Sort in Action
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Shortest Paths: Dijkstra’s Algorithm

Problem: Given a graph (directed or undirected) with non-negative
edge weights, compute shortest paths from given source node, s, to
all nodes.

• “Shortest” = sum of weights along path is smallest.

• For each node, keep estimated distance from s, . . .

• . . . and of preceding node in shortest path from s.

PriorityQueue<Vertex> fringe;

For each node v { v.dist() = ∞; v.back() = null; }

s.dist() = 0;

fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;

while (! fringe.isEmpty()) {

Vertex v = fringe.removeFirst ();

For each edge (v,w) {

if (v.dist() + weight(v,w) < w.dist())

{ w.dist() = v.dist() + weight(v,w); w.back() = v; }

}

}
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Example
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Final result:

Shortest-path tree

X|d processed node at distance d

Y|d node in fringe at distance d
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