
CS61B Lecture #37

Administrative:

• Last week’s homework due Thursday at 9:00AM.

Today’s Readings: Graph Structures: DSIJ, Chapter 12

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 1

Why Graphs?

• For expressing non-hierarchically related items

• Examples:

– Networks: pipelines, roads, assignment problems

– Representing processes: flow charts, Markov models

– Representing partial orderings: PERT charts, makefiles

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 2

Some Terminology

• A graph consists of

– A set of nodes (aka vertices)

– A set of edges: pairs of nodes.

– Nodes with an edge between are adjacent.

– Depending on problem, nodes or edges may have labels (or weights)

• Typically call node set V = {v0, . . .}, and edge set E.

• If the edges have an order (first, second), they are directed edges,
and we have a directed graph (digraph), otherwise an undirected
graph.

• Edges are incident to their nodes.

• Directed edges exit one node and enter the next.

• A cycle is a path without repeated edges leading from a node back
to itself (following arrows if directed).

• A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Di-
rected Acyclic Graph—DAG.

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 3

Some Pictures

a

b

c

dAcyclic:

Directed

a

b

c

d

e
Undirected

a

b

c

dCyclic: a

b

c

d

a

b

c

d

1

3 2

1

With Edge Labels: a

b

c

d

e
1

3

2
0

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 4

Trees are Graphs

• A graph is connected if there is a (possibly directed) path between
every pair of nodes.

• That is, if one node of the pair is reachable from the other.

• A DAG is a (rooted) tree iff connected, and every node but the root
has exactly one parent.

• A connected, acyclic, undirected graph is also called a free tree.
Free: we’re free to pick the root; e.g.,

a

b

c

d

e b

a d e

c

d

b c

a e

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 5

Examples of Use

• Edge = Connecting road, with length.

Detroit Chicago
200

• Edge = Must be completed before; Node label = time to complete.

Eat
1 hr

Sleep
8 hrs

• Edge = Begat

Martin George

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 6

More Examples

• Edge = some relationship

potstickers John Mary
eats loves

• Edge = next state might be (with probability)

hat the cat in bed
0.60.4 0.4 0.1

0.9

• Edge = next state in state machine, label is triggering input. (Start
at s. Being in state 4 means “there is a substring ‘001’ somewhere in
the input”.)

s 2 3 4
0 0 1

0

1

1

0,1

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 7

Representation

• Often useful to number the nodes, and use the numbers in edges.

• Edge list representation: each node contains some kind of list (e.g.,
linked list or array) of its successors (and possibly predecessors).

a b

c

1: a

(2,3) ()

2: b

(3) (1)

3: c

() (1,2)

• Edge sets: Collection of all edges. For graph above:

{(1, 2), (1, 3), (2, 3)}

• Adjacency matrix: Represent connection with matrix entry:

1

2

3

1 2 3

0 1 1
0 0 1
0 0 0

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 8

Traversing a Graph

• Many algorithms on graphs depend on traversing all or some nodes.

• Can’t quite use recursion because of cycles.

• Even in acyclic graphs, can get combinatorial explosions:

0

1

2

3

4

5

6

7

8

. . . 3N

Treat 0 as the root and do recursive traversal down the two edges
out of each node: Θ(2N) operations!

• So typically try to visit each node constant # of times (e.g., once).

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 9

General Graph Traversal Algorithm

COLLECTION OF VERTICES fringe;

fringe = INITIAL COLLECTION;
while (! fringe.isEmpty()) {

Vertex v = fringe.REMOVE HIGHEST PRIORITY ITEM();

if (! MARKED(v)) {

MARK(v);
VISIT(v);

For each edge (v,w) {

if (NEEDS PROCESSING(w))

Add w to fringe;

}

}

}

Replace COLLECTION OF VERTICES, INITIAL COLLECTION, etc.
with various types, expressions, or methods to different graph algo-
rithms.

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 10

Example: Depth-First Traversal

Problem: Visit every node reachable from v once, visiting nodes fur-
ther from start first.

Stack<Vertex> fringe;

fringe = stack containing {v};
while (! fringe.isEmpty()) {

Vertex v = fringe.pop ();

if (! marked(v)) {

mark(v);
VISIT(v);
For each edge (v,w) {

if (! marked (w))

fringe.push (w);

}

}

}

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 11

Depth-First Traversal Illustrated

a

b

c

d

[a]

e

f

a

b

c

d

[b,d]

e

f

a

b

c

d

[c,e,d]

e

f

a

b

c

d

[d,f,e,d]

e

f

a

b

c

d

[f,e,d]

e

f

a

b

c

d

[e,e,d]

e

f

a

b

c

d

[e,d]

e

f

a

b

c

d

[]

e

f

Fringe:

Marked:

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 12

Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with
the edges.

• That is, order the nodes v0, v1, . . . such that vk is never reachable
from vk′ if k′ > k.

• Gmake does this. Also PERT charts.

A

B

C

D

E

F

G

H
⇓

[A,B,C,F,D,G,E,H], or
[A,C,B,D,F,E,G,H], or
[A,B,C,F,D,E,H,G], or

...

Set<Vertex> fringe;

fringe = set of all nodes with no predecessors;
while (! fringe.isEmpty()) {

Vertex v = fringe.removeOne ();

add v to end of result list;
For each edge (v,w) {

decrease predecessor count of w;

if (predecessor count of w == 0)

fringe.add (w);

}

}

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 13

Topological Sort in Action

A0

B1

C0 fringe

D2

E3

F1

G1

H1

Output: []

A0

B0

C0

D1

E3

F1

G1

H1

[A]

A0

B0

C0

D0

E3

F0

G1

H1

[A,C]

A0

B0

C0

D0

E2

F0

G1

H1

[A,C,B]

A0

B0

C0

D0

E1

F0

G0

H1

[A,C,B,F]

A0

B0

C0

D0

E0

F0

G0

H1

[A,C,B,F,D]

...

A0

B0

C0

D0

E0

F0

G0

H0

[A,C,B,F,D,E,G,H]

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 14

Shortest Paths: Dijkstra’s Algorithm

Problem: Given a graph (directed or undirected) with non-negative
edge weights, compute shortest paths from given source node, s, to
all nodes.

• “Shortest” = sum of weights along path is smallest.

• For each node, keep estimated distance from s, . . .

• . . . and of preceding node in shortest path from s.

PriorityQueue<Vertex> fringe;

For each node v { v.dist() = ∞; v.back() = null; }

s.dist() = 0;

fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;

while (! fringe.isEmpty()) {

Vertex v = fringe.removeFirst ();

For each edge (v,w) {

if (v.dist() + weight(v,w) < w.dist())

{ w.dist() = v.dist() + weight(v,w); w.back() = v; }

}

}

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 15

Example

A|0 B|∞

C|∞

D|∞ E|∞ F|∞

G|∞ H|∞

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

A|0 B|2

C|5

D|3 E|∞ F|∞

G|7 H|∞

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

A|0 B|2

C|5

D|3 E|5 F|∞

G|7 H|∞

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

A|0 B|2

C|5

D|3 E|5 F|∞

G|6 H|9

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

A|0 B|2

C|5

D|3 E|5 F|7

G|6 H|9

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

A|0 B|2

C|5

D|3 E|5 F|6

G|6 H|7

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

A|0 B|2

C|5

D|3 E|5 F|6

G|6 H|7

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

Final result:

Shortest-path tree

X|d processed node at distance d

Y|d node in fringe at distance d

Last modified: Mon Nov 26 15:20:14 2007 CS61B: Lecture #37 16

	CS61B Lecture #37
	Why Graphs?
	Some Terminology
	Some Pictures
	Trees are Graphs
	Examples of Use
	More Examples
	Representation
	Traversing a Graph
	General Graph Traversal Algorithm
	Example: Depth-First Traversal
	Depth-First Traversal Illustrated
	Topological Sorting
	Topological Sort in Action
	Shortest Paths: Dijkstra's Algorithm
	Example

