CS61B Lecture #35

Today: Enumeration types

Coming Up: Concurrency and synchronization (Data Structures, Chap-
ter 10, and Assorted Materials on Java, Chapter 6; Graph Structures:
DSIJ, Chapter 12.

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 1

Side Trip into Java: Enumeration Types

e Problem: Need a type to represent something that has a few, named,
discrete values.

e In the purest form, the only necessary operations are == and !=;
the only property of a value of the type is that it differs from all
others.

e In older versions of Java, used named integer constants:

interface Pieces {
int BLACK_PIECE = 0, // Fields in interfaces are static final.
BLACK_KING = 1,
WHITE_PIECE = 2,
WHITE_KING = 3,
EMPTY = 4;
}

e C and C++ provide enumeration types as a shorthand, with syntax like
this:

enum Piece { BLACK_PIECE, BLACK_KING, WHITE_PIECE, WHITE_KING, EMPTY };

e But since all these values are basically ints, accidents can happen.

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 2

Enum Types in Java

e New version of Java allows syntax like that of C or C++, but with
more guarantees:

public enum Piece {

BLACK_PIECE, BLACK_KING, WHITE_PIECE, WHITE_KING, EMPTY
¥

e Defines Piece as a hew reference type, a special kind of class type.

e The names BLACK_PIECE, etc., are static, final enumeration constants
(or enumerals) of type PIECE.

e They are automatically initialized, and are the only values of the
enumeration type that exist (illegal to use new to create an enum
value.)

e Can safely use ==, and also switch statements:

boolean isKing (Piece p) {
switch (p) {
case BLACK_KING: case WHITE_KING: return true;
default: return false;
}
}

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 3

Making Enumerals Available Elsewhere

e Enumerals like BLACK_PIECE are static members of a class, not classes.

e Therefore, unlike C or C++, their declarations are not automatically
visible outside the enumeration class definition.

e So, in other classes, must write Piece.BLACK_PIECE, which can get
annoying.

e However, with version 1.5, Java has static imports: to import all
static definitions of class checkers.Piece (including enumerals), you
write

import static checkers.Piece.*;
among the import clauses.

e Alas, cannot use this for enum classes in the anonymous package.

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 4




Operations on Enum Types Fancy Enum Types

e Order of declaration of enumeration constants significant: .ordinal() e Enums are classes. You can define all the extra fields, methods, and
gives the position (numbering from 0) of an enumeration value. Thus, constructors you want.

Piece.BLACK KING.ordinal () is L. e Constructors are used only in creating enumeration constants. The
e The array Piece.values() gives all the possible values of the type. constructor arguments follow the constant name:
Thus, you can write: enum Piece {

for (Piece p : Piece.values ()) BLACK_PIECE (BLACK, false, "b"), BLACK_KING (BLACK, true, "B"),
System.out.printf ("Piece value #o/nd is %S%H", p.ordinal ()’ P)’ WHITE_PIECE (WHITE, false, "W"), WHITE_KING (WHITE, true, "W"),

) ) o EMPTY (null, false, " ");
e The static function Piece.valueOf converts a String into a value of

type Piece. So Piece.valueOf ("EMPTY") == EMPTY. private final Side color;

private final boolean isKing;
private final String textName;

Piece (Side color, boolean isKing, String textName) {
this.color = color; this.isKing = isKing; this.textName = textName;

}

Side color () { return color; }
boolean isKing () { return isKing; }
String textName () { return textName; }

3

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 5 Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 6




	CS61B Lecture #35
	Side Trip into Java: Enumeration Types
	Enum Types in Java
	Making Enumerals Available Elsewhere
	Operations on Enum Types
	Fancy Enum Types

