
CS61B Lecture #35

Today: Enumeration types

Coming Up: Concurrency and synchronization (Data Structures, Chap-
ter 10, and Assorted Materials on Java, Chapter 6; Graph Structures:
DSIJ, Chapter 12.

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 1

Side Trip into Java: Enumeration Types

• Problem: Need a type to represent something that has a few, named,
discrete values.

• In the purest form, the only necessary operations are == and !=;
the only property of a value of the type is that it differs from all
others.

• In older versions of Java, used named integer constants:

interface Pieces {

int BLACK_PIECE = 0, // Fields in interfaces are static final.

BLACK_KING = 1,

WHITE_PIECE = 2,

WHITE_KING = 3,

EMPTY = 4;

}

• C and C++ provide enumeration types as a shorthand, with syntax like
this:

enum Piece { BLACK_PIECE, BLACK_KING, WHITE_PIECE, WHITE_KING, EMPTY };

• But since all these values are basically ints, accidents can happen.

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 2

Enum Types in Java

• New version of Java allows syntax like that of C or C++, but with
more guarantees:

public enum Piece {

BLACK_PIECE, BLACK_KING, WHITE_PIECE, WHITE_KING, EMPTY

}

• Defines Piece as a new reference type, a special kind of class type.

• The names BLACK PIECE, etc., are static, final enumeration constants
(or enumerals) of type PIECE.

• They are automatically initialized, and are the only values of the
enumeration type that exist (illegal to use new to create an enum
value.)

• Can safely use ==, and also switch statements:

boolean isKing (Piece p) {

switch (p) {

case BLACK_KING: case WHITE_KING: return true;

default: return false;

}

}

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 3

Making Enumerals Available Elsewhere

• Enumerals like BLACK PIECE are static members of a class, not classes.

• Therefore, unlike C or C++, their declarations are not automatically
visible outside the enumeration class definition.

• So, in other classes, must write Piece.BLACK_PIECE, which can get
annoying.

• However, with version 1.5, Java has static imports: to import all
static definitions of class checkers.Piece (including enumerals), you
write

import static checkers.Piece.*;

among the import clauses.

• Alas, cannot use this for enum classes in the anonymous package.

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 4



Operations on Enum Types

• Order of declaration of enumeration constants significant: .ordinal()
gives the position (numbering from 0) of an enumeration value. Thus,
Piece.BLACK KING.ordinal () is 1.

• The array Piece.values() gives all the possible values of the type.
Thus, you can write:

for (Piece p : Piece.values ())

System.out.printf ("Piece value #%d is %s%n", p.ordinal (), p);

• The static function Piece.valueOf converts a String into a value of
type Piece. So Piece.valueOf ("EMPTY") == EMPTY.

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 5

Fancy Enum Types

• Enums are classes. You can define all the extra fields, methods, and
constructors you want.

• Constructors are used only in creating enumeration constants. The
constructor arguments follow the constant name:

enum Piece {

BLACK_PIECE (BLACK, false, "b"), BLACK_KING (BLACK, true, "B"),

WHITE_PIECE (WHITE, false, "w"), WHITE_KING (WHITE, true, "W"),

EMPTY (null, false, " ");

private final Side color;

private final boolean isKing;

private final String textName;

Piece (Side color, boolean isKing, String textName) {

this.color = color; this.isKing = isKing; this.textName = textName;

}

Side color () { return color; }

boolean isKing () { return isKing; }

String textName () { return textName; }

}

Last modified: Mon Nov 19 14:25:48 2007 CS61B: Lecture #35 6


	CS61B Lecture #35
	Side Trip into Java: Enumeration Types
	Enum Types in Java
	Making Enumerals Available Elsewhere
	Operations on Enum Types
	Fancy Enum Types

