CS61B Lecture #29		Quicksort: Speed thro	Quicksort: Speed through Probability	
Announcements:		Idea:	Idea:	
 We'll be running a preliminary test run for Project #2 on Monday night. Today: Sorting, continued Quicksort Selection Distribution counting Radix sorts 		 Partition data into pieces: everything > a pivot value at the high end of the sequence to be sorted, and everything ≤ on the low end. 		
		• Repeat recursively on the high and low pieces.		
		 For speed, stop when pieces are "small enough" and do insertion sort on the whole thing. Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too. 		
Last modified: Thu Nov 1 16:17:40 2007 Example of Quick	CS61B: Lecture #29 1	Last modified: Thu Nov 1 16:17:40 2007 Performance of (C561B: Lecture #29 2 Quicksort	
• In this example, we continue until pieces	are size ≤ 4 .	 Probabalistic time: 	• Probabalistic time:	
 Pivots for next step are starred. Arrange to move pivot to dividing line each time. Last step is insertion sort. 16101318-4-712-5191502229341* -4-5-7 18131210191502229346* -4-5-7 15132*100 1619*22293418 -4-5-7 10012 1513 1618 19293422 Now everything is "close to" right, so just do insertion sort: -7-5-4-1010121315161819222934 		 If choice of pivots good, divide data in two each time: Θ(N lg N) with a good constant factor relative to merge or heap sort. If choice of pivots bad, most items on one side each time: Θ(N²). Ω(N lg N) in best case, so insertion sort better for nearly ordered input sets. Interesting point: randomly shuffling the data before sorting makes Ω(N²) time very unlikely! 		

Quick Selection

The Selection Problem:	for given k , find $k^{\dagger h}$ smallest element in data.
------------------------	--

- Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- \bullet If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest \boldsymbol{k} items.
- \bullet Get $\textit{probably}\,\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, $p, \, {\rm as}$ in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m.$
 - If m = k, you're done: p is answer.
 - If m > k, recursively select k^{th} from left half of sequence.
 - If m < k , recursively select $(k-m-1)^{\mbox{th}}$ from right half of sequence.

CS61B: Lecture #29 5

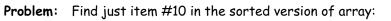
Selection Performance

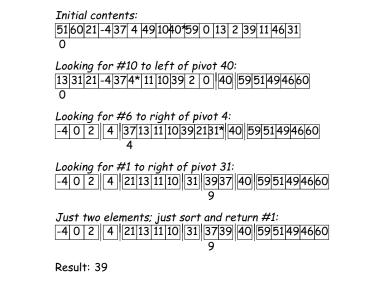
 \bullet For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases} 1, & \text{if } N = 1, \\ N + C(N/2), & \text{otherwise}, \end{cases}$$
$$= N + N/2 + \ldots + 1$$
$$= 2N - 1 \in \Theta(N)$$

- \bullet But in worst case, get $\Theta(N^2),$ as for quicksort.
- \bullet By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).

Selection Example





Last modified: Thu Nov 1 16:17:40 2007

CS61B: Lecture #29 6

Better than N lg N?

- Can prove that if all you can do to keys is compare them then sorting must take $\Omega(N\lg N).$
- \bullet Basic idea: there are N! possible ways the input data could be scrambled.
- \bullet Therefore, your program must be prepared to do N! different combinations of move operations.
- Therefore, there must be N! possible combinations of outcomes of all the **if** tests in your program (we're assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for k if tests is $2^k.$
- Thus, need enough tests so that $2^k > N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$m! \in \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \Theta\left(\frac{1}{m}\right)\right)$$

this tells us that

 $k\in \Omega(N\lg N).$

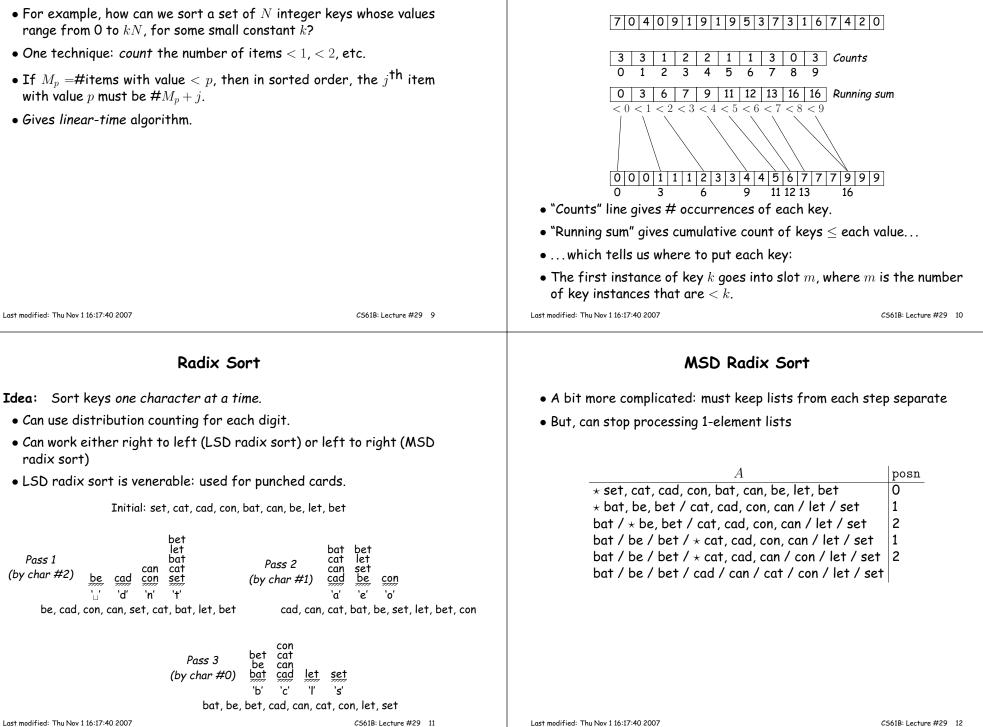
tion Donforman

Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
- One technique: count the number of items < 1, < 2, etc.
- If $M_p = \#$ items with value < p, then in sorted order, the j^{th} item with value p must be $\#M_p + j$.
- Gives linear-time algorithm.

Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:



Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- \bullet To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
- While radix sort takes $B = N \lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Last modified: Thu Nov 1 16:17:40 2007	CS61B: Lecture #29 13	Last modified: Thu Nov 1 16:17:40 2007	CS618: Lecture #29 14
Summary			
\bullet Insertion sort: $\Theta(Nk)$ comparisons and a amount data is displaced from final posit			
- Good for small datasets or almost ordered data sets.			
• Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.			
• Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.			
$ullet$ Heapsort, treesort with guaranteed balance: $\Theta(N\lg N)$ guaranteed.			
• Radix sort, distribution sort: $\Theta(B)$ (number external sorting.	er of bytes). Also good for		