CS61B Lecture #27

Today:

- Sorting algorithms: why?
- Insertion, Shell's, Heap, Merge sorts

Readings for Today:

DS(IJ), Chapter 8;

Last modified: Sun Oct 28 15:05:09 2007

CS61B: Lecture #27 1

Last modified: Sun Oct 28 15:05:09 2007

CS61B: Lecture #27 2

Some Definitions

- A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \leq , is:
 - Total: $x \leq y$ or $y \leq x$ for all x, y.
 - Reflexive: $x \leq x$;
 - Antisymmetric: $x \leq y$ and $y \leq x$ iff x = y.
 - Transitive: $x \leq y$ and $y \leq z$ implies $x \leq z$.
- However, our orderings may allow unequal items to be equivalent:
 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
 - A sort that does not change the relative order of equivalent entries is called *stable*.

• Sorting supports searching

- Binary search standard example
- Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same value for property X?
 - What are my nearest neighbors?
- Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).

Purposes of Sorting

Classifications

- Internal sorts keep all data in primary memory
- External sorts process large amounts of data in batches, keeping what won't fit in secondary storage (in the old days, tapes).
- Comparison-based sorting assumes only thing we know about keys is order
- Radix sorting uses more information about key structure.
- Insertion sorting works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- Selection sorting works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.

Last modified: Sun Oct 28 15:05:09 2007 C561B: Lecture #27 3 Last modified: Sun Oct 28 15:05:09 2007 C561B: Lecture #27 4

Sorting by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.
- ullet So gives us $O(N^2)$ algorithm. Can we say more?

Last modified: Sun Oct 28 15:05:09 2007

CS61B: Lecture #27 5

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^k 1$ apart:
 - sort items #0, $2^k 1$, $2(2^k 1)$, $3(2^k 1)$, ..., then
 - sort items #1, $1+2^k-1$, $1+2(2^k-1)$, $1+3(2^k-1)$, ..., then
 - sort items #2, $2+2^k-1$, $2+2(2^k-1)$, $2+3(2^k-1)$, ..., then
 - etc.
 - sort items $\#2^k 2$, $2(2^k 1) 1$, $3(2^k 1) 1$, ...,
 - Each time an item moves, can reduce #inversions by as much as 2^k+1 .
- Now sort subsequences of elements $2^{k-1} 1$ apart:
 - sort items #0, $2^{k-1}-1$, $2(2^{k-1}-1)$, $3(2^{k-1}-1)$, ..., then
 - sort items #1, $1+2^{k-1}-1$, $1+2(2^{k-1}-1)$, $1+3(2^{k-1}-1)$, ...,
- ullet End at plain insertion sort ($2^0=1$ apart), but with most inversions gone.
- Sort is $\Theta(N^{1.5})$ (take CS170 for why!).

Inversions

- \bullet Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:

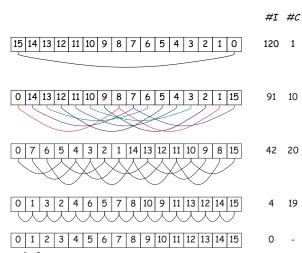
```
for (int i = 1; i < A.length; i += 1) {
  int j;
  Object x = A[i];
  for (j = i-1; j >= 0; j -= 1) {
    if (A[j].compareTo (x) <= 0) /* (1) */
      break;
    A[j+1] = A[j];
  }
  A[j+1] = x;
}</pre>
```

- #times (1) executes \approx how far x must move.
- \bullet If all items within K of proper places, then takes O(KN) operations.
- Thus good for any amount of nearly sorted data.
- ullet One measure of unsortedness: # of inversions: pairs that are out of order (= 0 when sorted, N(N-1)/2 when reversed).
- Each step of j decreases inversions by 1.

Last modified: Sun Oct 28 15:05:09 2007

CS61B: Lecture #27 6

Example of Shell's Sort

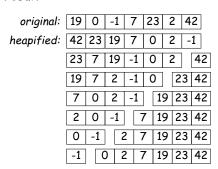


- I: Inversions left.
- C: Comparisons needed to sort subsequences.

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- ullet Gives $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:



Last modified: Sun Oct 28 15:05:09 2007

CS61B: Lecture #27 9

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

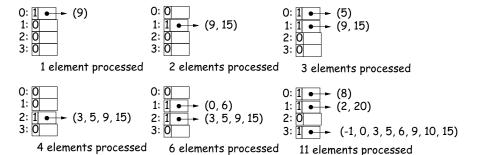
- ullet Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of $\mbox{\it arbitrary size}$ on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate:

Last modified: Sun Oct 28 15:05:09 2007 C561B: Lecture #27 10

Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

O elements processed



Last modified: Sun Oct 28 15:05:09 2007

CS61B: Lecture #27 11