
CS61B Lecture #13

Reminders:

• Please use bug-submit for submitting any programming problems you
have with homework and projects.

• You have started Project #1, right? It’s due in a week.

• Unlike homeworks, we don’t autograde projects continuously until
they are due. However, we will run the autograder once a day or
so before the due date so that those who have kept ahead can get
some additional help getting it right.

Today’s Topics:

• Modularization facilities in Java.

• Wrapping up more loose ends and leaving explicit material on Java
for now.

Readings for next week: Assorted Materials on Java, chap. 3 (al-
ready assigned) and 5; Head First Java, chap. 16; Data Structures
(Into Java), (Reader #2) chap. 1.
Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 1

Package Mechanics

• Classes correspond to things being modeled (represented) in one’s
program.

• Packages are collections of “related” classes and other packages.

• Java puts standard libraries and packages in package java and javax.

• By default, a class resides in the anonymous package.

• To put it elsewhere, use a package declaration at start of file, as in

package database; or package ucb.util;

• Sun’s javac uses convention that class C in package P1.P2 goes in
subdirectory P1/P2 of any other directory in the class path .

• Unix example:

nova% setenv CLASSPATH .:$HOME/java-utils:$MASTERDIR/lib/classes/junit.jar

nova% java junit.textui.TestRunner MyTests

Searches for TestRunner.class in ./junit/textui, ~/java-utils/junit/textui
and finally looks for junit/textui/TestRunner.class in the junit.jar
file (which is a single file that is a special compressed archive of an
entire directory of files).

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 2

Access Modifiers

• Access modifiers (private, public, protected) do not add anything
to the power of Java.

• Basically allow a programmer to declare what classes are supposed
to need to access (“know about”) what declarations.

• In Java, are also part of security—prevent programmers from ac-
cessing things that would “break” the runtime system.

• Accessibility always determined by static types.

– To determine correctness of writing x.f(), look at the definition
of f in the static type of x.

– Why? Because the rules are supposed to be enforced by the
compiler, which only knows static types of things (static types
don’t depend on what happens at execution time).

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 3

The Access Rules

• Suppose we have two packages (not necessarily distinct) and two
distinct classes:

package P1;

public class C1 ... {

// A member named M,

A int M ...

void h (C1 x)

{ ... x.M ... } // OK.

}

package P2;

class C2 extends C3 {

void f (P1.C1 x) {... x.M ...} // OK?

// C4 a subtype of C2 (possibly C2 itself)

void g (C4 y) {... y.M ... } // OK?

}

• The access x.M is

– Legal if A is public;

– Legal if A is protected and P1 is P2;

– Legal if A is package private (default—no keyword) and P1 is P2;

– Illegal if A is private.

• Furthermore, if C3 is C1, then y.M is also legal under the conditions
above, or if A is protected (i.e., even if P1 is not the same as P2).

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 4

What May be Controlled

• Classes and interfaces that are not nested may be public or package
private (we haven’t talked explicitly about nested types yet).

• Members—fields, methods, constructors, and (later) nested types—
may have any of the four access levels.

• May override a method only with one that has at least as permissive
an access level.

– Reason: avoid inconsistency:
package P1; | package P2;

public class C1 { | class C3 {

public int f () { ... } | void g (C2 y2) {

} | C1 y1 = y2

| y2.f (); // Bad???

public class C2 extends C1 { | y1.f (); // OK??!!?

// Actually a compiler error; pretend | }

// it’s not and see what happens | }

int f () { ... }

}

– That is, there’s no point in restricting C2.f, because access con-
trol depends on static types, and C1.f is public.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 5

Intentions of this Design

• public declarations represent specifications—what clients of a pack-
age are supposed to rely on.

• package private declarations are part of the implementation of a
class that must be known to other classes that assist in the imple-
mentation.

• protected declarations are part of the implementation that sub-
types may need, but that clients of the subtypes generally won’t.

• private declarations are part of the implementation of a class that
only that class needs.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 6

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK?

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 7

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 7

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 7

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 7

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 7

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

f1(); // ERROR

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 7

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

f1(); // ERROR

y1 = 3; // OK

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 7

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // OK?

f1(); // ERROR

y1 = 3; // OK

x1 = 3; // ERROR

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 7

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends A1 {

void h (SomePack.A1 x) {

x.f1 (); // ERROR

x.y1 = 3; // ERROR

f1(); // ERROR

y1 = 3; // OK

x1 = 3; // ERROR

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 7

Access Control Static Only

“Public” and “private” don’t apply to dynamic types; it is possible to call
methods in objects of types you can’t name:

package utils; | package mystuff;

/** A Set of things. */ |

public interface Collector { | class User {

void add (Object x); | Collector c =

} | utils.Utils.concat ();

---------------------------- |

package utils; | c.add ("foo"); // OK

public class Utils { | ... c.value (); // ERROR

public static Collector concat () { | ((utils.Concatenator) c).value ()

return new Concatenator (); | // ERROR

} |

} ----------------------------------

/** NON-PUBLIC class that collects strings. */

class Concatenater implements Collector {

StringBuffer stuff = new StringBuffer ();

int n = 0;

public void add (Object x) { stuff.append (x); n += 1; }

public Object value () { return stuff.toString (); }

}
Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 8

Loose End #1: Importing

• Writing java.util.List every time you mean List or java.lang.regex.Pattern
every time you mean Pattern is annoying.

• The purpose of the import clause at the beginning of a source file is
to define abbreviations:

– import java.util.List;means “within this file, you can use List
as an abbreviation for java.util.List.

– import java.util.*; means “within this file, you can use any
class name in the package java.util without mentioning the pack-
age.”

• Importing does not grant any special access; it only allows abbrevi-
ation.

• In effect, your program always contains import java.lang.*;

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 9

Loose End #2: Static importing

• One can easily get tired of writing System.out and Math.sqrt. Do
you really need to be reminded with each use that out is in the
java.lang.System package and that sqrt is in the Math package
(duh)?

• Both examples are of static members. New feature of Java allows
you to abbreviate such references:

– import static java.lang.System.out; means “within this file,
you can use out as an abbreviation for System.out.

– import static java.lang.System.*;means “within this file, you
can use any static member name in System without mentioning the
package.

• Again, this is only an abbreviation. No special access.

• Alas, you can’t do this for classes in the anonymous package.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 10

Loose End #3: Nesting Classes

• Sometimes, it makes sense to nest one class in another. The nested
class might

– be used only in the implementation of the other, or

– be conceptually “subservient” to the other

• Nesting such classes can help avoid name clashes or “pollution of the
name space” with names that will never be used anywhere else.

• Example: Polynomials can be thought of as sequences of terms.
Terms aren’t meaningful outside of Polynomials, so you might define
a class to represent a term inside the Polynomial class:

class Polynomial {

methods on polynomials

private Term[] terms;

private static class Term {

...

}

}

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 11

Inner Classes

• Last slide showed a static nested class. Static nested classes are
just like any other, except that they can be private or protected,
and they can see private variables of the enclosing class.

• Non-static nested classes are called inner classes.

• Somewhat rare (and syntax is odd); used when each instance of the
nested class is created by and naturally associated with an instance
of the containing class, like Banks and Accounts:

Bank
account

account
Bank

account

account

class Bank { | Bank e = new Bank(...);

private void connectTo (...) {...} | Bank.Account p0 =

public class Account { | e.new Account (...);

public void call (int number) { | Bank.Account p1 =

Bank.this.connectTo (...); ... | e.new Account (...);

} // Bank.this means "the bank that |

} // created me" |

} |

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 12

Loose End #4: Using an Overridden Method

• Suppose that you wish to add to the action defined by a superclass’s
method, rather than to completely override it.

• The overriding method can refer to overridden methods by using
the special prefix super.

• For example, you have a class with expensive functions, and you’d
like a memoizing version of the class.

class ComputeHard {

int cogitate (String x, int y) { ... }

...

}

class ComputeLazily extends ComputeHard {

int cogitate (String x, int y) {

if (already have answer for this x and y) return memoized result;
else

int result = super.cogitate (x, y);

memoize (save) result;
return result;

}

}

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 13

Trick: Delegation and Wrappers

• Not always appropriate to use inheritance to extend something.

• Homework gives example of a TrReader, which contains another
Reader, to which it delegates the task of actually going out and
reading characters.

• Another example: an “interface monitor:”

interface Storage { | class Monitor implements Storage {

void put (Object x); | int gets, puts;

Object get (); | private Storage store;

} | Monitor (Storage x) { store = x; gets = puts = 0; }

| public void put (Object x) { puts += 1; store.put (x); }

| public Object get () { gets += 1; return store.get (); }

| }

• So now, you can instrument a program:

// ORIGINAL // INSTRUMENTED

Storage S = something; Monitor S = new Monitor (something);
f (S); f(S);

System.out.println (S.gets + " gets");

• Monitor is called a wrapper class.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 14

Loose End #5: instanceof

• It is possible to ask about the dynamic type of something:

void typeChecker (Reader r) {

if (r instanceof TrReader)

System.out.print ("Translated characters: ");

else

System.out.print ("Characters: ");

...

}

• However, this is seldom what you want to do. Why do this:

if (x instanceof StringReader)

read from (StringReader) x;

else if (x instanceof FileReader)

read from (FileReader) x;

...

when you can just call x.read()?!

• In general, use instance methods rather than instanceof.

Last modified: Mon Oct 22 15:34:06 2007 CS61B: Lecture #13 15

	CS61B Lecture #13
	Package Mechanics
	Access Modifiers
	The Access Rules
	What May be Controlled
	Intentions of this Design
	Quick Quiz
	Access Control Static Only
	Loose End #1: Importing
	Loose End #2: Static importing
	Loose End #3: Nesting Classes
	Inner Classes
	Loose End #4: Using an Overridden Method
	Trick: Delegation and Wrappers
	Loose End #5: instanceof

