CS61B Lecture \#1

- Labs and discussions sections start this week. Get an account (if needed) and register electronically this week
- Go to any sections, labs where you fit.
- Class web page and newsgroup set up: read them regularly!
- Concurrent enrollment students: bring me your forms.
- Readers will be coming from one of the local copy stores (we'll announce).
- For Wednesday, read Chapters 1-4 of Head First Java.

Programming, not Java

- Here, we learn programming, not Java (or Unix, or NT, or....)
- Programming principles span many languages
- Look for connections.
- Syntax ($\mathrm{x}+\mathrm{y}$ vs. (+ x y)) is superficial.
- E.g., Java and Scheme have a lot in common.
- Whether you use GUIs, text interfaces, embedded systems, important ideas are the same.

Course Organization

- You read; we illustrate.
- Labs are important: practical dirty details go there.
- Homework is important, but really not graded: use it as you see fit and turn it in!
- Individual projects are really important! Expect to learn a lot.
- Use of tools is part of the course. Programming takes place in a programming environment:
- Handles program editing, debugging, controlling compilation, archiving versions.
- We'll see Eclipse in lab.
- Or there are coordinated suites of tools (e.g., Emacs + gjdb + make).
- Tests are challenging: better to stay on top than to cram.
- Tests, 90\%; Projects, 90\%; HW, 20\%
- Stressed? Tell us!
- Now's your opportunity to decide.

Last modified: Mon Oct 22 15:34:07 2007

Really simple example

```
```

public class Greet {

```
```

public class Greet {
/** Print a greeting message on standard output. */
/** Print a greeting message on standard output. */
public static void main (String[] args) {
public static void main (String[] args) {
System.out.print ("Hello, ");
System.out.print ("Hello, ");
if (args.length > 0)
if (args.length > 0)
System.out.println (args[0]);
System.out.println (args[0]);
else
else
System.out.println ();
System.out.println ();
}
}
}

```
```

}

```
```

```
% javac -g Greet.java # Creates Greet.class
```

% javac -g Greet.java \# Creates Greet.class
% java Greet world
% java Greet world
Hello, world
Hello, world
% java Greet me warmly
% java Greet me warmly
Hello, me
Hello, me
% javac -g Greet.java \# Creates Greet.class
% javac -g Greet.java \# Creates Greet.class

Interpreter calls Greet.main

Interpreter calls Greet.main

Output

Output

Another run

Another run

args[0] = "me"

```
# args[0] = "me"
```


Lessons from Simple Example

- All definitions are inside some class.
- Syntax $A . B$ means "the B that is defined (or contained) inside A,"
- E.g., System. out.println, Greet.main
- Ordinary function is static method, like Greet.main.
- Methods declare what kinds (types) of arguments they take, and what kind of value they return (void means "no value").
- Method calls use familiar prefix syntax.
- Command-line arguments become an array of strings.
- Array is indexed sequence: args [0], args [1] , ..., args [args.length-1]
- Conditional statement: if (condition) ...else
- Access control: public and others control what parts of the program may use a definition.

Prime Numbers

Problem: want java PrintPrimes0 U to print prime numbers through U.

You type: java primes 101

31374143475359616771
7379838997101

Definition: A prime number is an integer greater than 1 that has no divisors smaller than itself other than 1.

Useful Facts:

- If $k \leq \sqrt{N}$, then $N / k \geq \sqrt{N}$, for $N, k>0$.
- k divides N iff N / k divides N.

So: Try all potential divisors up to and including the square root.

Last modified: Mon Oct 22 15:34:07 2007
CS61B: Lecture \#1 6

Plan

```
class primes {
    /** Print all primes up to ARGS[0] (interpreted as an
    * integer), }10\mathrm{ to a line. */
    public static void main (String[] args) {
        printPrimes (Integer.parseInt (args[0]));
    }
    /** Print all primes up to and including LIMIT, 10 to
        * a line. */
    private static void printPrimes (int limit) {
        /*{ For every integer, x, between 2 and LIMIT, print it if
            isPrime (x), 10 to a line. }*/
    }
    /** True iff X is prime */
    private static boolean isPrime (int x) {
        return /*( X is prime )*/;
    }
}
```

