
CONCURRENCY AND MAPREDUCE 15
COMPUTER SCIENCE 61A

August 3, 2014

1 Concurrency

On your computer, you often use multiple programs at the same time. You might be read-
ing Piazza posts on your internet browser, talking to friends through instant messaging,
streaming music from Spotify, and maybe using a hundred other programs. But you only
have one computer, and one CPU! How can so many programs run all at once?

Since a computer program is a series of instructions and a process is the execution of those
instructions, what actually happens is that the CPU switches between different processes
very quickly, doing a little for each process before moving on to the next. This creates the
illusion that the programs are running concurrently.

This is because a process can contain many threads, all of which access the memory and
instructions allocated to a certain process. In a multi-threaded process, different threads
can be working on different sections of the code, or on different inputs to the process,
”concurrently.”

Today’s discussion is on parallelism, and the concurrency issues that might arise from hav-
ing multiple programs run simultaneously.

As a general note, parallel computing is extremely important in computer science today,
because it is becoming harder to increase the speed of processors due to physical heat lim-
itations. To achieve more processing power, computers now utilize multiple processors -
your computer probably has at least two ”cores” in its processor.

1

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 2
1.1 Decomposing a Python Statement

Before we can talk about concurrency, we need to first understand what happens under
the hood when the interpreter executes a Python statement.

When a computer sees a line of code in Python, it is usually too complex for the computer
to do it all in one step. To understand how a computer executes a program, we use
the basic model of a computer with a processor and memory. A computer uses memory
to store variables and their values, and the processor to process and compute data and
values.

However, the issue is that the processor itself cannot remember more than a handful
of values, and memory cannot do any calculation with the values that it stores. So a
computer must coordinate between the two by breaking down Python expressions into
steps that fall under three categories:

• Load values from memory to the processor

• Compute new values in the processor

• Store values from the processor into memory

For example, the following three lines in Python break down into the following computer
steps:

Python Code: Machine Instructions:
y = 5 store 5 -> y

x = y * 3 + 2 load y: 5
compute 5*3: 15
compute 15 + 2: 17
store 17 -> x

print(x) load x: 17
compute (call function print) 17

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 3
1.2 Parallelism

The basic idea behind parallelism is efficiency through multi-tasking. Imagine that you (a
processor) are at your apartment, and you have several tasks (threads) that you need to
complete: buying groceries, doing laundry, cleaning up the living space and calling your
ISP to get your internet fixed. You could do this serially, but you can end up wasting some
time (such as waiting for the wash and dry cycles to finish, or listening to hold music for
an hour) that could have been better spent doing other things. By doing your tasks in
parallel, you can get everything done more quickly than if you had done things serially.

Of course, imagine how much faster everything will get done if you got your apartment-
mate to help you out as well.

Computers parallelize by having their processor(s) rapidly alternate between multiple
threads, by executing a random number of steps before switching to another random
thread and repeating the process. However, when two processes are run in parallel, it
is not clear which one will start first, or when the processor will switch from one to the
other.

For example, consider the following:

def one():
print(’hello’)
print(’world’)

def two():
print(’CS 61A’)

Running one() and two() in parallel can yield any one of the following possibilities:

Possibility 1 Possibility 2 Possibility 3
hello hello cs61a
world cs61a hello
cs61a world world

Exactly what the interpreter prints can be different for every computer, and can even be
different for different trials on the same computer!

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 4
1.3 Questions

1. Consider the following code:

>>> def make_withdraw(balance):
def withdraw(amount):

nonlocal balance
if amount > balance:

print(’Insufficient funds’)
else:

balance = balance - amount
print(balance)

return withdraw
>>> w = make_withdraw(10)

What are all the possible pairs of printed statements that could arise from executing
the following 2 lines in parallel?

>>> w(8)
>>> w(7)

2. Suppose that Jonathan, Ajeya, and Matthew decide to pool some money together:

>>> balance = 100

Now suppose Jonathan deposits $10, Ajeya withdraws $20, and Matthew withdraws
half of the money in the account by executing the following commands:

Jonathan: balance = balance + 10
Ajeya: balance = balance - 20
Matthew: balance = balance - (balance / 2)

List all the different possible values for balance after these three transactions have
been completed, assuming that the banking system forces the three processes to run
sequentially in some order.

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 5
3. What are some other values that could be produced if the system allows the pro-

cesses to be interleaved?

For the following questions, what are possible values that x and y could have if the
given two threads are run concurrently?

4. Starting with x = 1,

>>> x = x * 2 >>> x = x + 10

5. Starting with x = 1, y = 1,

>>> x = x + 5 >>> x = x + y + 1
>>> y = 3

6. Starting with x = 1,

>>> if x % 2 == 0: >>> x = x * 2
... x = x + 1
... else:
... x = x + 100

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 6

2 Shared State

As you can see, problems can arise in parallel computation when one process influences
another during critical sections of a program.

Critical sections are sections of code that need to be executed as if they were a single in-
struction, but are actually made of several statements. For a parallel computation to be-
have correctly, the critical sections need to have atomicity – a guarantee that these sections
will not be interrupted by any other code.

There are several methods of synchronizing our code, but they all share the same idea –
each method has some way of signalling to other processes that they are currently han-
dling shared data, and that other processes should not modify the data.

Think of traffic lights at an intersection: the only thing that stops a driver at a red light is
the shared understanding that everyone will stop when they see a red light; there is no
physical mechanism that actually makes people stop!

2.1 Locks

Locks are shared objects that are used to signal that shared state is being read or modified.
They are also referred to as a mutexes (short for ”mutual exclusion”). In Python, a process
can acquire and release a lock, using the acquire and release methods respectively.
Consider the following code:

>>> from threading import Lock
>>> lock = Lock()
>>> def one():

lock.acquire() # ’one’ acquires ’lock’
print(’hello’)
print(’world’)
lock.release() # ’one’ releases ’lock’

>>> def two():
lock.acquire() # ’two’ acquires ’lock’
print(’jom’)
lock.release() # ’two’ releases ’lock’

While a lock is acquired by a process, any other process that tries to perform the acquire
action will be required to wait until the lock becomes free. Only one process can acquire
a lock at a time.

For a lock to “protect” a set of variables, all code blocks that deal with those variables
should be surrounded by acquire() and release() calls.

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 7
Let’s assume that one() and two() run in parallel, with one() starting first. Visually, it
looks like this:

1 one() # one starts
2 lock.acquire() # acquires lock two() # two starts
3 print(’hello’) lock.acquire() # two can’t acquire lock
4 print(’world’)
5 lock.release() # releases lock
6 print(’jom’) # two can acquire lock
7 lock.release() # releases lock

2.2 Questions

1. Rewrite the make withdraw function from the previous question such that the criti-
cal sections are protected by the lock.

>>> from threading import Lock
>>> def make_withdraw(balance):

balance_lock = Lock()

2. What are the possible pairs of printed values if the following code is now run?

>>> w = make_withdraw(10)
>>> w(8) #these 2 lines are executed in parallel
>>> w(7) #these 2 lines are executed in parallel

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 8
2.3 Deadlock

Deadlock is a situation that occurs when two or more processes are stuck, waiting for
each other to finish. The following two functions will deadlock if run concurrently:

lock1 = Lock()
lock2 = Lock()

def one():
lock1.acquire()
lock2.acquire()
print(’hello’)
print(’world’)
lock1.release()
lock2.release()

def two():
lock2.acquire()
lock1.acquire()
print(’cs61a’)
lock2.release()
lock1.release()

Visually, it looks like this:

1 two() # two starts
2 one() # one starts lock2.acquire # acquires lock2
3 lock1.acquire() # acquires lock1 lock1.acquire() # can’t acquire lock1
4 lock2.acquire() # can’t acquire lock2

one has to wait for two to release lock2 before one can continue – but two has to wait
for one to release lock1 before two can release lock2! Thus, the two functions are stuck in
deadlock.

When writing programs that utilize concurrency, you have to design your code in such a
way that it avoids deadlock.

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 9
2.4 Questions

1. Modify the following code such that compute and anti_compute will avoid dead-
lock, but will still be able to run in parallel without corrupting data.

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():

x_lock.acquire()
y_lock.acquire()
y = x + y
x = x * x
x_lock.release()
y_lock.release()

>>> def anti_compute():
y_lock.acquire()
x_lock.acquire()
y = y - x
x = sqrt(x)
y_lock.release()
x_lock.release()

2.5 Message Passing

An alternative way for handling concurrent computation is to avoid sharing memory
altogether, thus avoiding the problems we’ve seen above. Instead, we let computations
behave independently, but give them a controlled way in which that can send messages
to each other to coordinate.

Suppose for example that we want to map a function foo onto the elements of a list, but
the foo function takes a very long time. Instead of running foo on just one element at
a time, we could run foo on all the cores inside our computer. The different threads of
computation could then pass their results back to the main thread which can put them
together again.

Without concurrency, we might have the following code:

def foo(n):
Do something that takes a really long time
...

L = list(range(n))
M = list(map(foo, L))

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 10
1. If foo is O(n3), how long does this code take for input size is n?

2. Consider instead the code below, which uses (an unwritten) MessageReceiver class
which implements a method for sending and receiving messages. The idea is that n
many independent processes get run which will pass their results back to the main
thread. This thread will then receive those results and put the answers together.

Assuming that you now have n many processors to run the computation on, what is
the running time of the entire process?

def run_computation_thread(main_thread, n):
result = foo(n)
main_thread.send((n, result))

L = list(range(n))
M = list(range(n))
main_thread = MessageReceiver()

Start n many threads running
for i in range(n):

This creates an independent process which will run
the target function passed to it
thread = Thread(target = \

lambda: run_computation_thread(main_thread, L[i]))
thread.start()# Receive results from all the threads

for i in range(n):
Get the next result, or wait until someone sends us one.
result = main_thread.receive()
M[result[0]] = result[1]

3. The advantage of message passing is that nowhere in the code do we actually need to
worry about critical sections or deadlocks. However, unlike Locks and Semaphores,
Python doesn’t have a built-in class for message passing. Instead, fill in a definition
for MessageReceiver which implements the send/receive methods using Locks
and Semaphores.

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 11
class MessageReceiver:

def __init__(self):
self.__semaphore = Semaphore(0)
self.__messages_lock = Lock()
self.__messages = []

def send(self, message):

def receive(self):

4. We saw above how we can use Locks to avoid incorrect results when multiple ATMs
try to withdraw from an account simultaneously. Now consider how we might solve
a similar problem using message passing. Suppose we have a number of processes
acting as ATMs running concurrently with the main Bank process. Make sure you un-
derstand why this code doesn’t have critical sections the same way the Lock example
did.

class Account:
def __init__(self):

self.balance = 0
def deposit(self, x):

self.balance += x
def withdraw(self, x):

self.balance -= x
class Bank:

def __init__(self):
self.accounts = {}

def create_account(account_num):
self.accounts[account_num] = Account()

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 12
def atm_process(bank_receiver):

my_receiver = MessageReceiver()
while True:

account_num = input(’Account Number: ’)
action = input(’withdraw/deposit: ’)
amount = input(’Amount: ’)
Send a command to the bank and get a result back.
Print the result.

def bank_process(bank):
my_receiver = MessageReceiver()
while True:

""" Receive a message and process it. Send the string
’OK’ back to the ATM if the command was valid (i.e.
was ’deposit’ or ’withdraw’) and send back
’Bad Command’ otherwise."""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 13

3 MapReduce (Optional)

The core idea behind efficient parallelism is splitting up work using threads among mul-
tiple processors. The examples that we’ve talked about so far have involved a computer
with one or more processors. But why limit ourselves to one computer?

MapReduce uses the compututational power of a cluster of nodes (or a network of com-
puters) to process large amounts of data much more quickly than just one could. There
are three phases in the MapReduce execution model:

• Map Phase - A mapper is applied to the inputs, and it emits key-value pairs

• Sort Phase - All the intermediate key-value pairs are grouped by keys.

• Reduce Phase - For each intermediate key, a reducer is applied to ”accumulate” all
the values associated with the key.

MapReduce coordinates the work in the cluster by breaking up the input into smaller
subproblems and assigning them to each node, assigning new work when nodes finish
their jobs, and rescheduling work if a node runs into an error or is working slowly. When
nodes finish their work, they emit the results so that another node doing the next step can
process those values. The process continues until finally the entire job is done.

3.1 Mappers and Reducers

Since the MapReduce framework is an abstraction, all we need to do is provide a mapper
function, which will emit key-value pairs from the inputs, and a reducer function, which
will combine all the intermediate key-value pairs with the same key value.

Suppose for example we wanted to count the number occurences of each word in Shake-
speare’s works. Our mapper should emit each word once:

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit

def emit_words(line):
for word in line.split():

emit(word, 1)

for line in sys.stdin:
emit_words(line)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 14
Then each key-value pair is just an occurrence of each word. So then after our key-value
pairs are sorted by key, all our reducer needs to do is count the number of occurrences of
each word:

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit, group_values_by_key

for key, value_iterator in group_values_by_key(sys.stdin):
emit(key, sum(value_iterator))

3.2 Questions

1. Suppose instead of counting the occurence of each word, we just wanted the count of
the number of total words as well as the number of lines. How would the map and
reduce functions be written?

Map function:

def emit_words(line):

for line in sys.stdin:
emit_words(line)

Reduce function:

for key, value_iterator in group_values_by_key(sys.stdin):

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 15: CONCURRENCY AND MAPREDUCE Page 15
2. In Project 2, we processed quite a large number of tweets, and were able to analyze

how states in the U.S. felt about certain words. But data that we analyzed doesn’t
come close to qualifying as big data. If we wanted to analyze all the tweets in the
U.S. from a year, or even just a week, our implementation quickly becomes infeasible.
We could, however, approach this problem using MapReduce instead. Finish the
implementation of the map and reduce functions.

Map function:

def emit_tweet_sent(closest_state, sentiment):

for tweet in sys.stdin:
closest_state, sentiment = analyze_tweet(tweet)
emit_tweet_sent(closest_state, sentiment)

Reduce function:

for key, value_iterator in group_values_by_key(sys.stdin):

3. As part of a project, you and your team have measured the atmospheric concentration
of various greenhouse gases in various cities around the globe. You want to process
the data by finding the average atmospheric concentration of each greenhouse gas
component in each city. Finish the implementation of the map and reduce functions.

Map function:

def emit_city_greenhouse_concentration(city, measurements):

gases = [’CO2’, ’H2O’, ’CH4’, ’NO2’, ’O3’]
for line in sys.stdin:

city, CO2, H2O, CH4, NO2, O3 = line.split()
emit_city_gas_concentration(city, (CO2, H2O, CH4, NO2, O3))

Reduce function:

for key, value_iterator in group_values_by_key(sys.stdin):

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

