
CALCULATOR 10
COMPUTER SCIENCE 61A

July 24, 2014

Remember homework 6? Let’s take a second look at the Calculator language, a subset of
a language we’ll be learning later called Scheme. In today’s discussion, we’ll be looking
at implementing Calculator using regular Python.

1 Calculator

Here is a reminder of how our Calculator language looks so far. Right now it can handle
the four basic arithmetic operations which can be nested and take varying numbers of
arguments. Here’s a couple examples of Calculator in action:

> (+ 2 2)
4
> (- 5)
-5
> (* (+ 1 2) (+ 2 3))
15

The goal is to write an interpreter for this Calculator language. The job of an interpreter
is, given an expression, evaluate its meaning. So let’s talk about expressions.

1.1 Representing Expressions

There are two kinds of expressions. A call expression is a linked list - where the first ele-
ment is the operator, and each subsequent element is an operand. A primitive expression
is an operator symbol or number. When we type a line at the Calculator prompt and hit
enter, we’ve just sent an expression to the interpreter.

To represent Scheme lists in Python, we used Pair objects. The class definition is below:

1

DISCUSSION 10: CALCULATOR Page 2

class nil:
"""The empty list"""

def __len__(self):
return 0

def map(self, fn):
return self

def to_py_list(self):
return []

nil = nil() #nil now refers to a single instance of nil class

class Pair:

def __init__(self, first, second=nil):
self.first = first
self.second = second

def __len__(self):
n, second = 1, self.second
while isinstance(second, Pair):

n += 1
second = second.second

if second is not nil:
raise TypeError("length attempted on improper list")

return n

def __getitem__(self, k):
if k < 0:

raise IndexError("negative index into list")
j, y = 0, self
while j < k:

if y.second is nil:
raise IndexError("list index out of bounds")

elif not isinstance(y.second, Pair):
raise TypeError("ill-formed list")

j, y = j + 1, y.second
return y.first

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 3

def map(self, fn):
"""Returns a Scheme list after mapping Python function
fn over self."""
mapped = fn(self.first)
if self.second is nil or isinstance(self.second, Pair):

return Pair(mapped, self.second.map(fn))
else:

raise TypeError("ill-formed list")

def to_py_list(self):
"""Returns a Python list containing the elements of this
Scheme list."""
y, result = self, []
while y is not nil:

result += [y.first]
if not isinstance(y.second, Pair) and y.second is not nil:

raise TypeError("ill-formed list")
y = y.second

return result

1.2 Questions

1. Translate the following Python representation of Calculator expressions into the proper
Scheme-syntax:

>>> Pair(’+’, Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

>>> Pair(’+’, Pair(’1’, Pair(Pair(’*’, Pair(2, Pair(3, nil))), nil)))

2. Translate the following Calculator expressions into calls to the Pair constructor.

> (+ 1 2 (- 3 4))

> (+ 1 (* 2 3) 4)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 4
1.3 Evaluation

So what is evaluation? Evaluation discovers the form of an expression and executes a
corresponding evaluation rule.

Primitive expressions are evaluated directly. Call expressions are evaluated recursively:

1. Evaluate each operand expression,

2. Collect their values as a list of arguments, and

3. Apply the named operator to the argument list.

Here’s calc eval:

def calc_eval(exp):
if not isinstance(exp, Pair): # expression is primitive

return exp
else:

operator, operands = exp.first, exp.second
args = operands.map(calc_eval).to_py_list()

return calc_apply(operator, args)

As you can see, all we’ve done is follow the rules of evaluation outlined above. If the
expression is primitive (i.e. not a Scheme list), simply return it. Otherwise, evaluate the
operands and apply the operator to the evaluated operands.

How do we apply the operator? We’ll use calc apply, with dispatching on the operator
name:

def calc_apply(operator, args):
if operator == ’+’:

return sum(args)
elif operator == ’-’:

if len(args) == 1:
return -args[0]

else:
return args[0] - sum(args[1:])

elif operator == ’*’:
return reduce(mul, args, 1)

Depending on what the operator is, we can match it to a corresponding Python call. Each
conditional clause above handles the application of one operator.

Something very important to keep in mind: calc eval deals with expressions, calc apply
deals with values.

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 5
1.4 Questions

1. Suppose we typed each of the following expressions into the Calculator interpreter.
How many calls to calc evalwould they each generate? How many calls to calc apply?

> (+ 2 4 6 8) > (+ 2 (* 4 (- 6 8)))

2. The - operator will fail if given no arguments. Add error handling to raise an excep-
tion when this situation is encountered (the type of exception is unimportant).

3. We also want to be able to perform division, as in (/ 4 2). Supplement the exist-
ing code to handle this. If division by 0 is attempted, or if there are no arguments
supplied, you should raise an exception (the type of exception is unimportant).

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 6
4. Alyssa P. Hacker and Ben Bitdiddle are also tasked with implementing the and oper-

ator, as in (and (= 1 2) (< 3 4)). Ben says this is easy: they just have to follow
the same process as in implementing * and /. Alyssa is not so sure. Who’s right?

5. Now that you’ve had a chance to think about it, you decide to try implementing and
yourself. You may assume the conditional operators (e.g. <, >, =, etc) have already
been implemented for you.

1.5 Bonus Questions

6. Implement the expt operator such that the following works:

> (expt 2 3)
8
> (expt 3 4)
81

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 7
7. Implement quote. A quote expression simply returns its argument without evalu-

ating it.

> (quote (2 (3 4) 5))
(2 (3 4) 5)
> (quote (+ 3 4))
(+ 3 4)

8. Implement the list function. list evaluates all its arguments and returns a list of
their values.

> (list (+ 3 4) 5 (* 2 3))
(7 5 6)
> (list (+ 1 2) (quote (3 4)) 5)
(3 (3 4) 5)

9. Now that we can create lists, let’s modify the + operator so that it can add lists together
elementwise. You can assume that the lists are the same length and contain only
numbers.

> (+ (quote (7 4 3 9)) (quote 1 1 1 1) (quote (5 1 5 1)))
(13 6 9 2)
> (+ (quote (1 2 3 4)) (list (+ 2 2) 3 (- 4 2) 1))
(5 5 5 5)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 8

2 Trees as Classes

2.1 Trees

Before, we represented trees using functions. Now that we’ve learned OOP, let’s see
Trees in a whole new way (but not really)! A tree has a datum and a list of children
as before.

class Tree:
def __init__(self, datum, *args):

self.datum = datum
self.children = list(args)

1. Implement the method size which returns the size of a tree.

def size(self):
"""
>>> t = Tree(9, Tree(1, Tree(1), Tree(9)), Tree(1, Tree(1)))
>>> t.size()
6
"""

2. Implement the height method. The height of a tree is the length of the longest path
to a leaf.

def height(self):
"""
>>> t = Tree(1, Tree(2, Tree(4), Tree(5, (Tree(7)))), \

Tree(3, Tree(6)))
>>> t.children[1].height() # Tree whose datum is 3
1
>>> t.height() # longest path
3
"""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 9
3. The best part about classes are their mutability. Let’s make a method replace that

replaces all data of some value in a tree with a new value.

def replace(self, old, new):
"""
>>> t = Tree(1, Tree(2, Tree(3), Tree(2)), Tree(3, Tree(2)))
>>> t.replace(3, 1)
>>> t.pretty_print()
1
|__2
| |__1
| |__2
|__1

|__2
"""

4. Implement a method add tree that adds a child to the end of the tree.

def add_tree(self, tree):
"""
>>> t = Tree(1, Tree(2))
>>> t.add_tree(Tree(3, Tree(4)))
>>> t.pretty_print()
1
|__2
|__3

|__4
"""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 10
5. Implement a get treemethod that returns the node in the tree whose datum is equal

to val, or None if no such node exists. You may assume that there are no duplicate
elements in the tree.

def get_tree(self, val):
"""
>>> t = Tree(1, Tree(2, Tree(4), Tree(5)), Tree(3, Tree(6)))
>>> t.get_tree(’foo’)
>>> t.get_tree(3).pretty_print()
3
|__6
"""

2.2 Binary Trees

A Binary Tree is a tree in which every node has at most two children, one to the left and
one to the right.

class BinaryTree(object):
def __init__(self, datum, left=None, right=None):

self.datum, self.left, self.right = datum, left, right

1. Implement the method size to find the size of the tree.

def size(self):
""" Returns the size of a tree.
>>> t = BinaryTree(7, BinaryTree(3,\
BinaryTree(4), BinaryTree(6)))
>>> t.size()
4
>>> BinaryTree(3, None, BinaryTree(5)).size()
2
"""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 11
2. A Binary Search Tree (BST) is a Binary Tree in which all datum values in the
left child of a tree are less than its datum, and all datum values to the right are
greater than its datum. Make a method is bst that determines whether a Binary
Tree is also a BST.

def is_bst(self, low=float(’-inf’), high=float(’inf’)):
""" Makes sure a tree is a bst.
>>> t = BinaryTree(5, BinaryTree(3), BinaryTree(6))
>>> t.pretty_print()
5
/ \
3 6
>>> t.is_bst()
True
>>> s = BinaryTree(7, BinaryTree(4,\
BinaryTree(3), BinaryTree(8)), None)

>>> s.pretty_print()
7
/
4
/ \
3 8
>>> s.is_bst() # 8 is bigger than 7 though it is on the left
False
"""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 10: CALCULATOR Page 12
2.3 Binary Search Trees

You can also make a BST class that inherits from a Binary Tree.

class BST(BinaryTree):
def __init__(self, datum, left=None, right=None):

BinaryTree.__init__(self, datum, left, right)
assert self.is_bst(), "Breaking Invariants"

As a fundamental quirk of class objects is their mutability, it’s important to create a way
to add to our BST while maintaining it’s properties of being sorted.

1. Implement a method insert which will insert an element into the tree. Make sure
you preserve the BST invariant (things to the left are smaller, things to the right are
larger). If the element is already present, don’t add it to the tree.

def insert(self, elem):
"""
>>> t = BST(15, BST(7))
>>> t.insert(12)
>>> t.insert(28)
>>> t.insert(7)
>>> t.pretty_print()
15
/ \
7 28
\
12

"""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

