
ITERATORS, GENERATORS, GENERIC FUNCTIONS

9
COMPUTER SCIENCE 61A

July 22, 2014

0.1 Warmup — What Would Python Output?

1. >>> a = iter(range(2))
>>> a

>>> next(a)

>>> next(a)

>>> next(a)

1 Iterators

An iterator is an abstract object that represents a sequence of values. It must be able to:

1. Know how to calculate its next value.

2. Know when it has no more values left to compute.

Unlike lists, an iterator does not have its values on hand. Instead, it computes its values on
the spot when the iterator is called. An Iterator is any object that has the two methods:

iter : Method that returns an iterator that you can call next on (like hands).

next : Method that returns the next piece of data from the iterator (like fingers).

1

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 2

Most data structures
have their values
ready to access at
any time repeatedly.

An iterator can only
bring up its values
in the order they
are assigned.

That, and only once
per each instance.

Basically, an iterator has a series of things that it would like to return in some order.

An iterator will stop working when it has no more pieces to return. This raises the excep-
tion StopIteration.

Some iterators generate infinite streams, like Naturals()

>>> class NaturalsIterator:
... def __init__(self):
... self.current = 0
... def __next__(self):
... result = self.current
... self.current += 1
... return result
... def __iter__(self):
... return self

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 3
Here’s the hand analogy in code.

>>> class Hand:
... def __init__(self):
... self.fingers = 5
... def__iter__(self):
... return self
... def__next__(self):
... if self.fingers == 0:
... print("No more fingers!")
... raise StopIteration
... else:
... print("Chop chop!")
... self.fingers -=1
... return self.fingers+1

1.1 Questions

1. Remember your test dice from the Hog Project? Produce an iterator object called
IterDice that behaves almost as a test dice does. The difference is that after
returning each value once, the iterator is complete and it raises StopIteration. Re-
member that it should have an init and next method.

>>> dice = IterDice(1, 2, 3)
>>> d = iter(dice)
>>> next(d)
1
>>> next(d)
2
>>> next(d)
3
>>> next(d)
StopIteration

class IterDice(object):
def __init__(self, *outcomes):

self.oc = ______________
self.start = 0

def ____________(__________):
return self

def ____________(__________):

if ________________________:

self.start += 1
return self.oc[self.start-1]

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 4
2. How could you modify the code so that the IterDice actually behaves like test dice?

i.e. don’t raise a StopIteration? Write only your changes.

>>> d = iter(IterDice(3, 6))
>>> next(d)
3
>>> next(d)
6
>>> next(d)
3

3. Define an iterator that combines the elements of two input streams using some binary
operator, also given as input. The resulting iterator should have a size equal to the
size of the shorter of its two input iterators.

>>> from operator import add
>>> evens = Iter_Combiner(NaturalsIterator(), NaturalsIterator(), add)
>>> next(evens)
0
>>> next(evens)
2
>>> next(evens)
4

class Iter_Combiner():
def __init__(self, iter1, iter2, combiner):

def __next__(self):

def __iter__(self):
return self

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 5
4. What results from executing this sequence of commands?

>>> naturals = NaturalsIterator()
>>> doubled_naturals = Iter_Combiner(naturals, naturals, add)
>>> next(doubled_naturals)

>>> next(doubled_naturals)

2 Generators

A Generator is a type of iterator that utilizes the yield keyword to do what an iterator
does. yield returns a value while saving everything that has already happened in the
body, and continues the body from after the yielded value when next() is called.

>>> class Hand:
... def __init__(self):
... self.fingers = 5
... def __iter__(self):
... while True:
... if self.fingers == 0:
... print("No more fingers!")
... raise StopIteration
... print("Chop chop!")
... yield self.fingers
... self.fingers -= 1

Notice that yield replaces the need for a next method.

2.1 Questions

1. What do Python strings, tuples, lists, dictionaries and ranges all have in common?
(Hint: What did we just learn about?)

2. What does the following code return?

>>> for elem in 5:
... print(elem)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 6
3. Is every generator an iterator? Is every iterator a generator?

4. Make a test dice using a generator.
(Do not raise a StopIteration.)

class GenerDice:
def __init__(self,*oc):

self.oc = oc
self.start = 0

def __iter__(self):

3 Generic Functions

3.1 Do You Recall?

Generic Operations combine together different types of objects flexibly in a large pro-
gram. They aid in creating abstract data types (ADTs) using one of two abstraction bar-
riers:

1. Interface: A shared set of data, functions, and/or messages used to manipulate var-
ious data types.

2. Modules, Multiple Representations: Creating independent parts (functions) per-
mitting different design choices to coexist in a single program.

As new representations of something come along, there’s no need to remove pre-
existing implementations. Instead, new representations should work together with
previous designs to save time by preventing programmers from starting a concept
from scratch.

Neither triangle is wrong; different representations are better
for some functions than others, such as finding the perimeter and
finding the area.

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 7
3.2 Generic Functions: For Real

A generic function is a function that can take in different object types and operate on all
of them. Some ways to create one include:

Type Dispatching: Creating a function for each different combination of data types for
which an argument is valid, then choose one to use by checking the types of argu-
ments passed in.

Coercion: Converting one object(1) into another object(2) so that (2) can use (1)’s
methods.

If each kind of whale represents a different function, a generic function
is equivalent to a whale which can eat krill, fish, ships, etc. and
output the appropriate result for each different object.

3.3 Questions

1. Consider the following ways of implementing the generic eat function. Say whether
we are using interfaces, type dispatching, data directed programming, or coercion.

(a) You have many different whales, and they all have an eat method. So, you write
the generic eat function as follows:

def eat(whale, food):
return whale.eat(food)

(b) Each whale has a different method for eating:

def eat(whale, food):
if type(whale) == FishEater:

return whale.eat_fish(food)
elif type(whale) == KrillEater:

return whale.eat_krill(food)
return whale.destroy_ship(food)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 8
2. In Pokémon, you have a bag that can store many different items. While each item

performs different actions, all of them can be selected for use by pressing an A Button.

class Berry:
def __init__(self, amount):

self.amount = amount
def eat(self):

if self.amount > 0:
self.amount -= 1

return self.amount

class BattleItem:
def __init__(self, message):

self.message = message
def use(self):

return self.message

class KeyItem:
def __init__(self, on, off):

self.on = on
self.off = off
self.active = False

def switch(self):
if not self.active:

self.active = True
return self.on

else:
self.active = False
return self.off

We want to write the code for press a such that it can model selecting and using
various items. The press a function has been given to you; however, it depends on
the dictionary item actions. Fill in the item actions dictionary so that press a
works as intended.

def press_a(item):
key = type(item)
return item_actions[key](item)

Make the item_actions dictionary
which is used in press_a above.
Hint: Domain and Range
Look at press_a and figure out
what the keys and values of
item_actions should be.

item_actions = {

}

>>> berry = Berry(3)
>>> flute = BattleItem(\
"played a familiar tune")
>>> bike = KeyItem(\
"using bike", \
"stopped using bike")
>>> press_a(berry)
2
>>> press_a(berry)
1
>>> press_a(flute)
’played a familiar tune’
>>> press_a(berry)
0
>>> press_a(bike)
’using bike’
>>> press_a(flute)
’played a familiar tune’
>>> press_a(bike)
’stopped using bike’

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 9

Extended Question: What Color is it?

Art professors Sheet and Screen are having a dispute over whether teal (a blueish-
greenish color) is a kind of blue or green. After a week, they realize that they may
have been arguing over two different hues. The decide they need a way to exactly
identify their colors. The problem is, Professor Screen uses RGB (red, green, and blue)
values, while Professor Sheet uses CMYK (Cyan, Magenta, Yellow, Black).

A favorite student of both (because CS students have great style), you are asked to
develop a program that will tell them what color their combination of pigment
values generates. You decide to identify color using the html color codes (hex), a
base-16 representation. Professor Screen provides you with code from a prior project:

class Color: # treat this as an interface, not a class
base16 = {0:’0’, 1:’1’, 2:’2’, 3:’3’, 4:’4’, 5:’5’, 6:’6’, 7:’7’,\

8:’8’, 9:’9’, 10:’A’, 11:’B’, 12:’C’, 13:’D’, 14:’E’, 15:’F’}
class Color_rgb(Color):

def __init__(self, r, g, b):
assert (r>=0 and r<256) and (g>=0 and g<256) \

and (b>=0 and b<256), "Values must be from 0 to 255."
self.color_list = [r, g, b]

@property
def red(self):

return self.color_list[0]
Similar properties for green and blue

def what_color_rgb(rgb): # hex code
hex_color = "#"
for hue in rgb.color_list:

hex_color += Color.base16[hue // 16]
hex_color += Color.base16[hue % 16]

return hex_color

You make a Color cmyk object for Professor Sheet:

class Color_cmyk(Color):
def __init__(self, c, m, y, k):

assert (c>=0 and c<=1) and (m>=0 and m<=1) and (y>=0 and y<=1)\
and (k>=0 and k<=1), "Values must be from 0 to 1."

self.color_list = [c, m, y, k]
@property
def cyan(self):

return self.color_list[0]
Similar properties for magenta, yellow, black

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 10

def what_color_cmyk(cmyk):
hex_color = "#"
for hue in cmyk.color_list[:-1]: # ignore black

num = int(255 * (1-hue) * (1-cmyk.black))
hex_color += Color.base16[num // 16]
hex_color += Color.base16[num % 16]

return hex_color

3. Make a generic what color method using type dispatching.

def what_color(color):
if type(color) == Color_rgb:

if type(color) == Color_cmyk:

Later, you decide it would be better if the two classes of color should have a shared
interface and give Color cmyk property methods red, green, and blue.

This is now part of the Color_cmyk class.
@property
def red(self):

return int(255 * (1-self.cyan) * (1 - self.black))
Similar properties for green and blue.

4. Rewrite what color to take advantage of the interface. (Assume that what color rgb
and what color cmyk don’t exist any more.)

def what_color(color):
hex_color = "#"
color_list = []

for hue in color_list:
hex_color += Color.base16[hue // 16]
hex_color += Color.base16[hue % 16]

return hex_color

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 9: ITERATORS, GENERATORS, GENERIC FUNCTIONS Page 11
5. Professor Sheet and Professor Screen were so pleased with your function that they’ve

decided to collaborate on a new art project together! They’ve asked for your assis-
tance in designing a function mix color that will allow them to combine any two
colors in equal proportions using their own system of producing color. That is, create
a mix color function that will return the hex-code of blending two colors regard-
less of what representations are given.

You decide to coerce CMYK values to RGB values with a cmyk to rgb method to
avoid type-dispatching. (What if we introduce another kind of color? There’s just too
many possible mixing combinations!)

def cmyk_to_rgb(color):

Time to write mix color.

def mix_color(c1,c2):

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

