
MIDTERM REVIEW 6
COMPUTER SCIENCE 61A

July 10, 2014

1 What Would Python Output?

Consider the following definitions and assignments, and determine what Python would
output for each of the calls below if they were evaluated in order.

>>> def andrew(rohin):
... return lambda andrew: rohin(shah)
...
>>> def rohin(andrew):
... return lambda rohin: andrew(huang)
...
>>> huang, shah = andrew, rohin

1. >>> rohin("shah") == rohin("shah")

2. >>> andrew("Elephants are an abstraction")

3. >>> andrew("Don’t break")("abstraction barriers")

4. >>> rohin(lambda x: x == andrew)("I love CS 61A!")

1

DISCUSSION 6: MIDTERM REVIEW Page 2

2 Environment Diagrams

1. fly = 100
def back(home):

frog = lambda stroke: stroke + 200
return frog

def im(free):
fly = back
turn = 200
egerszergi = lambda turn: -turn + fly(400)(free)
return egerszergi(turn)

free = im(fly)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 6: MIDTERM REVIEW Page 3
2. def cookie(m):

return lambda a, b, c: m(a, b) * c

def cupcake():
return 5

cookie(lambda a, b: a + b)(3, cupcake(), 4)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 6: MIDTERM REVIEW Page 4

3 Higher Order Functions

1. Here is a simple cipher algorithm, called a Caesar cipher. Given a word, it will return
the word with each letter shifted by a certain amount. Let us consider a Caesar cipher
where you shift every letter by 2:

>>> two shifter(’apple’) # We pretend two_shifter exists
’crrng’

We get the result ’crrng’ because ”a” shifts over by two letters in the alphabet to
get ”c”, ”p” shifts over by two letters to get ”r”, ”l” to ”n”, and ”e” to ”g”.

One important part of the Caesar cipher is that it wraps around the alphabet:

>>> two_shifter(’yoyo’)
’aqaq’

So when we shift ”y”, we wrap around the alphabet and get ”a”.

We are going to generalize a 2-shifter, since we want to be able to Caesar cipher by
any amount. Write a function make caesar cipher that accepts as its argument the
shift amount and returns a function that accepts a word that Caesar ciphers by that
amount.

You can use the following definitions to help you write your function as well.

alphabet = ’abcdefghijklmnopqrstuvwxyz’

def find_index(letter):
index = 0
for char in alphabet:

if letter == char:
return index

index += 1

Don’t forget that you’re also able to index into strings as you would lists:

>>> alphabet[0]
’a’
>>> alphabet[25]
’z’

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 6: MIDTERM REVIEW Page 5
def make_caesar_cipher(shift_amt):

"""Creates a Caesar cipher that shifts a word by a number
of characters.

>>> one_shifter = make_caesar_cipher(1)
>>> one_shifter(’apple’)
’bggmf’
>>> one_shifter(’abcxyz’)
’bcdyza’
>>> make_caesar_cipher(5)(’applez’)
’fuuqje’
"""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 6: MIDTERM REVIEW Page 6

4 Linked Lists and Recursion

1. Given lst, a flat linked list, return a new copy of the linked list with an element el
inserted at index n. Assume that n is a valid index!

def insert_nth_place(lst, el, n):
"""
>>> x = link(1, link(2, link(3)))
>>> y = insert_nth_place(x, 42, 0)
>>> print_linked_list(y)
< 42 1 2 3 >
>>> print_linked_list(insert_nth_place(y, 10, 2))
< 42 1 10 2 3 >
"""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 6: MIDTERM REVIEW Page 7
2. Given a deep linked list, define max depth, a function which returns the maximum

number of nested lists inside the list. For example, the list <<<<3>>>2> would have
a max depth of 3, because the list <<<3>>> is nested inside the larger list. Elements
in a flat list are all at depth 0. Assume you have a function is linked list(obj),
which returns True if obj is a linked list and False otherwise.

def max_depth(lst):
"""
>>> x = link(link(1, link(link(2, empty), empty)),

link(3, link(4, empty)))
>>> max_depth(x)
2
>>> y = link(1, link(2, link(3, empty)))
>>> max_depth(y)
0
"""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 6: MIDTERM REVIEW Page 8

5 Data Abstraction

1. Given the following constructor and selector functions for linked lists,

def link(first, rest):
return [first] + rest

def first(lst):
return lst[0]

def rest(lst):
return lst[1:]

empty = []

Find and correct the data abstraction violations:

def get_item(lst, n):
while n > 0:

lst, n = lst[1:], n - 1
return first(lst)

def reverse(lst):
new_lst = []
while lst != []:

new_lst = link(get_item(lst, 0), new_lst)
lst = lst[1:]

return new_lst

def append(lst1, lst2):
if not lst1:

return lst2
return [lst1[0]] + append(rest(lst1), lst2))

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 6: MIDTERM REVIEW Page 9

6 Sequences

1. Define a function common prefix, which takes in two Python lists and returns a list
of elements found at the beginning of each list.

def common_prefix(lst1, lst2):
"""
Returns the common prefix of lst1 and lst2.
>>> common_prefix([1, 2, 3, 4], [1, 2, 1, 4])
[1, 2]
>>> common_prefix([9, 8, 7, 6], [9, 8])
[9, 8]
"""

7 Trees

Here’s a particular implementation of the tree data structure. Remember that calling
children on a tree returns a Python list of trees!

def tree(node, children=[]):
def new_tree(dispatch):

if dispatch == ’node’:
return node

else:
return children

return new_tree

def datum(tree):
return tree(’node’)

def children(tree):
return tree(’children’)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 6: MIDTERM REVIEW Page 10
1. Define a function make even which takes in a tree of integers, and returns a new

tree in which all the odd numbers are increased by 1 and all the even numbers remain
the same.

def make_even(t):
"""
>>> t = tree(1, [tree(2, [tree(3)]), tree(4, [tree(5)])])
>>> print_tree(make_even(t))

2
/ \
2 4
| |
4 6
"""

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

DISCUSSION 6: MIDTERM REVIEW Page 11

8 Orders of Growth

1. What is the runtime of foo?

def foo(n):
if n == 0:

return True
return foo(n // 2) or foo(n % 2)

2. What is the runtime of bottles?

def bottles(n):
if n == 1:

return ’on the wall’
elif n >= 100:

return bottles(99)
return bottles(n - 1)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai

