
CONTROL AND HIGHER ORDER FUNCTIONS 2
COMPUTER SCIENCE 61A

June 26, 2014

1 Warmup Question

1. Draw the environment diagram for this code

bob = lambda f: f(x + 1)
x = 5
bob(lambda x: x + 1)

Solution: 7. TODO: Draw env diagram

2. Draw the environment diagram for this code

n = 7
def f(x):

return x + 3
def g(f, x):

return f(f(x) * 2)
m = g(f, n)

Solution:

1



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 2

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 3

2 Functions

A function that manipulates other functions as data is called a higher order function (HOF).
For instance, a HOF can be a function that takes functions as arguments, returns a function
as its value, or both.

2.1 Functions as Argument Values

Suppose we would like to square or double every natural number from 1 to n and print
the result as we go. Using the functions square and double, each of which are functions
that take one argument that do as their name imply, fill out the following:

def square_every_number(n):

Solution:

i = 1
while i <= n:

print(square(i))
i += 1

def double_every_number(n):

Solution:

i = 1
while i <= n:

print(double(i))
i += 1

Note that the only thing different about square every number and double every number
is just what function we call on n when we print it. Wouldn’t it be nice to generalize
functions of this form into something more convenient? When we pass in the number,
couldn’t we specify, also, what we want to do to each number < n.

To do that, we can define a higher order function called every. every takes in the func-
tion you want to apply to each element as an argument, and applies it to n natural num-
bers starting from 1. So to write square every number, we can simply do:

def square_every_number(n):
every(square, n)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 4
Equivalently, to write double every number, we can write:

def double_every_number(n):
every(double, n)

Note: These functions are not pure — as defined below, every will actually print values
to the screen.

2.2 Questions

1. Now implement the function every that takes in a function func and a number n,
and applies that function to the first n numbers from 1 and prints the result along the
way:

def every(func, n):

Solution:

i = 1
while i <= n:

print(func(i))
i += 1

2. Similarly, implement the function keep, which takes in a function condition cond
and a number n, and only prints a number from 1 to n to the screen if it fulfills the
condition:

def keep(cond, n):

Solution:

i = 1
while i <= n:

if cond(i):
print(i)

i += 1

2.3 Functions as Return Values

This problem comes up often: write a function that, given something, returns a function
that does something else. The key message — conveniently emphasized — is that your

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 5
function is supposed to return a function. We can do so by defining an internal function
within our function definition and then returning the internal function.

def my_wicked_function(blah):
def my_wicked_helper(more_blah):

...
return my_wicked_helper

For simple functions, we can also do so using lambda.

def my_wicked_function(blah):
return lambda more_blah: ...

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 6
2.4 Moar Questions

1. Write a function and add one that takes a function f as an argument (such that f is
a function of one argument). It should return a function that takes one argument, and
does the same thing as f, except adds one to the result.

def and_add_one(f):

Solution:

def foo(x):
return f(x) + 1

return foo

2. Write a function and add that takes a function f and a number n as arguments. It
should return a function that takes one argument, and does the same thing as the
function argument, except adds n to the result.

def and_add(f, n):

Solution:

def foo(x):
return f(x) + n

return foo

3. The following code has been loaded into the python interpreter:

def skipped(f):
def g():

return f
return g

def composed(f, g):
return lambda x: f(g(x))

def added(f, g):
def h(x):

return f(x) + g(x)
return h

def square(x):

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 7
return x*x

def two(x):
return 2

What will python output when the following lines are evaluated?

>>> composed(square, two)(7)

Solution:

4

>>> skipped(added(square, two))()(3)

Solution:

11

>>> composed(two, square)(2)

Solution:

2

4. Draw the environment diagram for this.

>>> from operator import add
>>> def curry2(h):
... def f(x):
... def g(y):
... return h(x,y)
... return g
... return f
>>> make_adder = curry2(add)
>>> add_three = make_adder(3)
>>> five = add_three(2)

Solution:

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 8

3 Domain and Range

In lecture we saw how to create pairs using functions and an if-else statement. In fact, it
is even possible to create pairs using just functions! The mechanism for doing this can be
confusing, but it is easiest to understand through domain and range. This is a midterm-
level question that tests understanding of higher order functions and demonstrates why
domain and range is so useful.

Here is the definition of cons:

def cons(x, y):
return lambda m: m(x, y)

1. What can be inferred about the value of the variable m?

Solution: It must be a function that takes in two arguments.

2. Suppose we create a pair as follows:

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 9
pair = cons(1, 2)

What is the type of the value of pair?

Solution: It is a function that takes in one argument (which must itself be a func-
tion that takes in two arguments).

3. Describe as completely as possible the domain and range of cons.

Solution: cons is a function that
- takes in two arguments and
- returns a new function that
— takes in a one-argument function that
—– takes in two arguments and returns something

4. Write the functions car and cdr, which get the first and second item of the pair
respectively. Make sure you think about the domain and range requirements that you
found in the previous questions. Both function can be defined with one line of code.

>>> car(cons(1, 2))
1
>>> cdr(cons(1, 2))
2

Solution:

def car(pair):
return pair(lambda x, y: x)

def cdr(pair):
return pair(lambda x, y: y)

CS61A Summer 2014: Andrew Huang and Rohin Shah, with
Jonathan Allen, Matthew Chow, Ajeya Cotra, Davis Foote, Jessica Gu, Angela Lin, Jeffrey Lu, Beth
Marrone, Youri Park, Alana Tran, Dickson Tsai


