
CS61A Final

Review Problems

August 14, 2013

Interpreters
Reading

How many times is scheme_read and read_tail called for the following

function calls?

(+ 1 2 3)

scheme_read: __ read_tail: __

(+ (- 2 1) 6 (* 3 5))

scheme_read: __ read_tail: __

(append ‘(1) (cons 2 ‘(3 . ())))

scheme_read: __ read_tail: __

Interpreters
Reading

How many times is scheme_read and read_tail called for the following

function calls?

(+ 1 2 3)

scheme_read: 5 read_tail: 5

(+ (- 2 1) 6 (* 3 5))

scheme_read: 11 read_tail: 13

(append ‘(1) (cons 2 ‘(3 . ())))

scheme_read: 12 read_tail: 13

Interpreters
Evaluating

How many times is scheme_eval and scheme_apply called for the following

function calls?

(+ 1 2 3)

scheme_eval: __ scheme_apply: __

(+ (- 2 1) 6 (* 3 5))

scheme_eval: __ scheme_apply: __

(append ‘(1) (cons 2 ‘(3 . ())))

scheme_eval: __ scheme_apply: __

Interpreters
Evaluating

How many times is scheme_eval and scheme_apply called for the following

function calls?

(+ 1 2 3)

scheme_eval: 5 scheme_apply: 1

(+ (- 2 1) 6 (* 3 5))

scheme_eval: 11 scheme_apply: 3

(append ‘(1) (cons 2 ‘(3 . ())))

scheme_eval: 7 scheme_apply: 2

Streams

Define make_list_cycle_stream, which takes in a non-empty list, and

returns a stream that continuously cycles through all the elements in the list.

def make_list_cycle_stream(lst):

 ‘***YOUR CODE HERE***’

Define make_fib_stream, which returns a stream containing the fibonacci

sequence.

def make_fib_stream():

 ‘***YOUR CODE HERE***’

Streams

def make_list_cycle_stream(lst):

 def cycle_stream(n):

 def compute_rest():

 return cycle_stream(n + 1)

 return Stream(lst[n % len(lst)], compute_rest)

 return cycle_stream(0)

Streams

def make_fib_stream(lst):

 def fib_stream(first, second):

 def compute_rest():

 return fib_stream(second, first + second)

 return Stream(first, compute_rest)

 return fib_stream(0, 1)

Define a generator that outputs the following:

>>> l = list_gen()

>>> next(l)

[[1]]

>>> next(l)

[[[2]], [1]]

>>> next(l)

[[[[3]]], [[2]], [1]]

First, you might want to make two helper functions. Define nest_each_item

which takes in a list and makes each item in the list a nested item. This

function can either be mutating or not mutating.

Iterators and Generators

Define a generator that outputs the following:

>>> l = list_gen()

>>> next(l)
[[1]]

>>> next(l)

[[[2]], [1]]

>>> next(l)

[[[[3]]], [[2]], [1]]

def nest_each_item(lst):

 “””

 >>> lst = [[1], [2], [3]]

 >>> nest_each_item(lst)

 >>> lst

 [[[1]], [[2]], [[3]]]

 “””

Iterators and Generators

Define a generator that outputs the following:

>>> l = list_gen()

>>> next(l)
[[1]]

>>> next(l)

[[[2]], [1]]

>>> next(l)

[[[[3]]], [[2]], [1]]

def nest_each_item(lst):

 for index, item in enumerate(lst):

 lst[index] = [item]

Iterators and Generators

Define a generator that outputs the following:

>>> l = list_gen()

>>> next(l)
[[1]]

>>> next(l)

[[[2]], [1]]

>>> next(l)

[[[[3]]], [[2]], [1]]

Now, write another helper called increment_each_item which takes in a list and

increments the number that is nested within each of the lists. Remember

that the number can be nested in any number of levels.

Iterators and Generators

Define a generator that outputs the following:

>>> l = list_gen()

>>> next(l)
[[1]]

>>> next(l)

[[[2]], [1]]

>>> next(l)

[[[[3]]], [[2]], [1]]

def increment_each_item(lst):

 “””

 >>> lst = [[1], [[2]], [[[3]]]]

 >>> increment_each_item(lst)

 >>> lst

 [[2], [[3]], [[[4]]]]

 “””

Iterators and Generators

Define a generator that outputs the following:

>>> l = list_gen()

>>> next(l)
[[1]]

>>> next(l)

[[[2]], [1]]

>>> next(l)

[[[[3]]], [[2]], [1]]

def increment_each_item(lst):

 for orig_item in lst:

 item = orig_item

 while isinstance(item[0], list):

 item = item[0]

 item[0] += 1

Iterators and Generators

Define a generator that outputs the following:

>>> l = list_gen()

>>> next(l)
[[1]]

>>> next(l)

[[[2]], [1]]

>>> next(l)

[[[[3]]], [[2]], [1]]

Finally, put those together to make the generator that outputs the above output.

The idea is to take the existing list and nest each of the items, then add one

to all of the items, then append a [1] onto the end of the list.

Iterators and Generators

Define a generator that outputs the following:

>>> l = list_gen()

>>> next(l)
[[1]]

>>> next(l)

[[[2]], [1]]

>>> next(l)

[[[[3]]], [[2]], [1]]

def list_gen():

Iterators and Generators

Define a generator that outputs the following:

>>> l = list_gen()

>>> next(l)
[[1]]

>>> next(l)

[[[2]], [1]]

>>> next(l)

[[[[3]]], [[2]], [1]]

def list_gen():

 lst = [[1]]

 while True:

 yield lst

 nest_each_item(lst)

 increment_each_item(lst)

 lst.append([1])

Iterators and Generators

Logic
What Would Logic Print?

(fact (> 5 3))

(fact (> 14 5))

(fact (> 21 14))

(fact (> 43 21))

(fact (> inf ?num))

(fact (gt? ?a ?b)

 (> ?a ?b))

(fact (gt? ?a ?b)

 (> ?a ?c)

 (> ?c ?b))

(fact (lt? ?a ?b)

 (gt? ?b ?a))

logic> (query (> 5 3))

Logic
What Would Logic Print?

(fact (> 5 3))

(fact (> 14 5))

(fact (> 21 14))

(fact (> 43 21))

(fact (> inf ?num))

(fact (gt? ?a ?b)

 (> ?a ?b))

(fact (gt? ?a ?b)

 (> ?a ?c)

 (> ?c ?b))

(fact (lt? ?a ?b)

 (gt? ?b ?a))

logic> (query (> 5 3))

Success!

Logic
What Would Logic Print?

(fact (> 5 3))

(fact (> 14 5))

(fact (> 21 14))

(fact (> 43 21))

(fact (> inf ?num))

(fact (gt? ?a ?b)

 (> ?a ?b))

(fact (gt? ?a ?b)

 (> ?a ?c)

 (> ?c ?b))

(fact (lt? ?a ?b)

 (gt? ?b ?a))

logic> (query (gt? ?num 3))

Logic
What Would Logic Print?

(fact (> 5 3))

(fact (> 14 5))

(fact (> 21 14))

(fact (> 43 21))

(fact (> inf ?num))

(fact (gt? ?a ?b)

 (> ?a ?b))

(fact (gt? ?a ?b)

 (> ?a ?c)

 (> ?c ?b))

(fact (lt? ?a ?b)

 (gt? ?b ?a))

logic> (query (gt? ?num 3))

Success!

num: 5

num: 14

num: inf

Logic
What Would Logic Print?

(fact (> 5 3))

(fact (> 14 5))

(fact (> 21 14))

(fact (> 43 21))

(fact (> inf ?num))

(fact (gt? ?a ?b)

 (> ?a ?b))

(fact (gt? ?a ?b)

 (> ?a ?c)

 (> ?c ?b))

(fact (lt? ?a ?b)

 (gt? ?b ?a))

logic> (query (lt? ?num

43))

Logic
What Would Logic Print?

(fact (> 5 3))

(fact (> 14 5))

(fact (> 21 14))

(fact (> 43 21))

(fact (> inf ?num))

(fact (gt? ?a ?b)

 (> ?a ?b))

(fact (gt? ?a ?b)

 (> ?a ?c)

 (> ?c ?b))

(fact (lt? ?a ?b)

 (gt? ?b ?a))

logic> (query (lt? ?num

43))

Success!

num: 21

num: 14

Logic
Coding Practice

logic> (fact (even? ...)

logic> (query (even (1 1 1 1 1)))

Failed.

logic> (query (even (1 1 1 1))

Success!

logic> (fact (interleave ...)

logic> (query (interleave (1 3) (2 4 6 8) ?what))

Success!

what: (1 2 3 4 6 8)

Logic
Coding Practice

(fact (even? ())

(fact (even? (1 1 . ?rest))

 (even? ?rest))

(fact (interleave () ?b ?b))

(fact (interleave (?first . ?rest) ?b (?first . ?result))

 (interleave ?b ?rest ?result))

Parallelism
Parallel Threads

Assume that initially, x = 10. The following two lines are then executed in

parallel:

Thread 1 Thread 2

x = x + x x = x * x

What are all the possible values of x after both threads are finished being

executed?

What are the correct values of x?

Parallelism
Parallel Threads

Assume that initially, x = 10. The following two lines are then executed in

parallel:

Thread 1 Thread 2

x = x + x x = x * x

What are all the possible values of x after both threads are finished being

executed?

20, 100, 110, 200, 400

What are the correct values of x?

200, 400

Parallelism
Locks

Assume the following lines are executed before entering separate threads:

x, y = 5, 3

xlock, ylock = Lock(), Lock()

Thread 1 Thread 2

ylock.acquire() xlock.acquire()

y = y - 1 x = x * y

ylock.release() xlock.release()

xlock.acquire() ylock.acquire()

x = x + y y = y * 2

xlock.release() ylock.release()

What are all the possible paired values of x and y after both threads are

finished being executed?

Parallelism
Locks

Assume the following lines are executed before entering separate threads:

x, y = 5, 3

xlock, ylock = Lock(), Lock()

Thread 1 Thread 2

ylock.acquire() xlock.acquire()

y = y - 1 x = x * y

ylock.release() xlock.release()

xlock.acquire() ylock.acquire()

x = x + y y = y * 2

xlock.release() ylock.release()

What are all the possible paired values of x and y after both threads are

finished being executed?

(x, y): (19, 8), (24, 8), (36, 8), (24, 9)

MapReduce

Write the mapper and reducer to solve the following problem: Given a file of

input, you want to count the number of times that a word appeared on a line

with x number of words.

Example:

the quick brown fox jumped over the lazy river

the other fox went to the mall

the river was brown

WORD [(number of words in that line, number of times it appeared)]

the [(9, 2), (7, 2), (4, 1)]

quick [(9, 1)]

brown [(9, 1), (4, 1)]

MapReduce

Example:

the quick brown fox jumped over the lazy river

the other fox went to the mall

the river was brown

WORD [(number of words in that line, number of times it appeared)]

the [(9, 2), (7, 1), (4, 1)]

quick [(9, 1)]

brown [(9, 1), (4, 1)]

def mapper(line):

 “***YOUR CODE HERE***”

MapReduce

the [(9, 2), (7, 1), (4, 1)]

quick [(9, 1)]

brown [(9, 1), (4, 1)]

from mapreduce import emit

def mapper(line):

 “***YOUR CODE HERE***”

 word_lst= line.split()

 for word in word_lst:

 emit(word, (len(word_lst), 1))

for line in sys.stdin:

 mapper(line)

MapReduce

the [(9, 2), (7, 1), (4, 1)]

quick [(9, 1)]

brown [(9, 1), (4, 1)]

def reducer(input):

 “***YOUR CODE HERE***”

MapReduce

the [(9, 2), (7, 1), (4, 1)]

quick [(9, 1)]

brown [(9, 1), (4, 1)]

from mapreduce import emit, group_values_by_key

def reducer(input):

 for key, value_iterator in group_values_by_key(input):

 items = {}

 for length, count in value_iterator:

if length not in items:

items[length] = 0

items[length] += count

 emit(key, [(key, value) for key, value in
items.items()])

reducer(sys.stdin)

