61ALECTURE 28 —
MAPREDUCE

Mark Miyashita
August 12, 2013

Announcements
- Project 4 Recursive Art Contest — due tonight (8/12) at 11:59!

- submit projdcontest

- HW13 — due Tuesday (8/13) at 11:59pm.
- Project 4 — due Tuesday (8/13) at 11:59pm.
- Final Exam — Thursday (8/15) at 7pm.

- Extra Office Hours up on the website!

CPU Performance

Performance of individual CPU cores has largely stagnated in recent years

Graph of CPU clock frequency, an important component in CPU performance:

Clock Frequency (MHz)

31623

1000

w
N

0

Clock Frequency

B AMD

M Cypress
M DEC

B Fujitsu
Il Hitachi
B HP

B BM

M intel

I Motorola
B MIPS
B saGl

M Sun

M Cyrix
W HAL

1970

1975

1980

1985 1990 1995

Year
http://cpudb.stanford.edu

2000

2005

2010

B NexGen
I Ross
B Zilog
B Centaur

2015

Parallelism

Applications must be parallelized in order run faster

* Waiting for a faster CPU core is no longer an option

Parallelism is easy in functional programming:

®* When a program contains only pure functions, call expressions can be evaluated in
any order, lazily, and in parallel

* Referential transparency: a call expression can be replaced by its value (or vice versa)
without changing the program

But not all problems can be solved efficiently using functional programming

Today: the easy case of parallelism, using only pure functions

* Specifically, we will look at MapReduce, a framework for such computations

MapReduce

MapReduce is a framework for batch processing of Big Data

What does that mean?
®* Framework: A system used by programmers to build applications

* Batch processing: All the data is available at the outset, and results aren't used until
processing completes

* Big Data: A buzzword used to describe data sets so large that they reveal facts about
the world via statistical analysis

The MapReduce idea:
®* Data sets are too big to be analyzed by one machine
®* When using multiple machines, systems issues abound

® Pure functions enable an abstraction barrier between data processing logic and
distributed system administration

Systems

Systems research enables the development of applications by defining and
implementing abstractions:

®* Operating systems provide a stable, consistent interface to unreliable, inconsistent
hardware

* Networks provide a simple, robust data transfer interface to constantly evolving
communications infrastructure

* Databases provide a declarative interface to software that stores and retrieves
information efficiently

* Distributed systems provide a single-entity-level interface to a cluster of multiple
machines

A unifying property of effective systems:

Hide complexity, but retain flexibility

The Unix Operating System

Essential features of the Unix operating system (and variants):

® Portability: The same operating system on different hardware
* Multi-Tasking: Many processes run concurrently on a machine
* Plain Text: Data is stored and shared in text format

®* Modularity: Small tools are composed flexibly via pipes

standard input P process |
A e » standard output
(Text input]
standard error (Text output)

The standard streams in a Unix-like operating system are
conceptually similar to Python iterators

Python Programs in a Unix Environment

The built-in input function reads a line from standard input
The built-in print function writes a line to standard output
Demo

The values sys.stdin and sys. stdout also provide access to the Unix standard
streams as "files"

A Python "file" is an interface that supports iteration, read, and write methods

Using these "files" takes advantage of the operating system standard stream
abstraction

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set of intermediate key-value
pairs

®* The mapper takes an iterator over inputs, such as text lines

®* The mapper yields zero or more key-value pairs per input

)
. T
(Google MapReduce) > mapper L :: i it 1 (5. 1)
(Is a Big Data framework) 1 408 X a: 4 o0: 2
(For batch processing) ' :: - e: 1 e: 1
——J(o0: 1 i1

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

®* The reducer takes an iterator over key-value pairs
* All pairs with a given key are consecutive

®* The reducer yields 0 or more values,
each associated with that intermediate key

MapReduce Evaluation Model

—
: —
(Google MapReduce) > mapper L Z: i 1: 1 a: 1
(Is a Big Data framework] 1 > ol a: 4 0: 2
(For batch processing) S e: 1 e: 1
—— J(o0: 1 i+ 1

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

®* The reducer takes an iterator over key-value pairs
* All pairs with a given key are consecutive

®* The reducer yields O or more values,
each associated with that intermediate key

——
a: 4

gf i > reducer ~) 6 5
Y a i
e: 1 0: 5
e: 3| b reducer -

le: 1) Pe: 5 u: 1

Above-the-Line: Execution Model

Input
Intermediate | kl:v kl:v k2:v k3:v k4:v k4:v k5:v k4:v kl:v k3:v
[[Group by Keyj]
Grouped |kl:v,v,v, v k2:v |k3:v,v | kd:v,v.v | kS5:v

Output

http://research.google.com/archive/mapreduce-osdiO4-slides/index-auto-0007.html

Below-the-Line: Parallel Execution

r— - . .. - = r- — . - 7 5 = r- — .- = = 5 = -
| Map Task 1 | | Map Task 2 | | Map Task 3 I <
| | | Q
: o o 1=
©
| L L =
| I o L&
! L L o
| | | | | |
I klwv klwv k2w | | k3o kdoy kd:v ks | I k4 v kl:v k3:v |
| Partitioning Function | | Partitioning Function I | Partitioning Function -: w
______ — — — — — — — — — — | — — — —] — — — — oD
=
0]

\

Sort and Group Sort and Group
kd vy A "task" is a Unix klvvvy | k3wy

c
| ' | |
| | | :
: : process running : ,
| | on a machine I I

| |
: | : |
| | | |
| | '

Reduce Task 1

—— — — — — — — — o] — — — — — —

http://research.google.com/archive/mapreduce-osdiO4-slides/index-auto-0008.html

<aseqd 23npay

MapReduce Assumptions

Constraints on the mapper and reducer:

* The mapper must be equivalent to applying a deterministic pure function to each
input independently

®* The reducer must be equivalent to applying a deterministic pure function to the
sequence of values for each key

Benefits of functional programming:

®* When a program contains only pure functions, call expressions can be evaluated in
any order, lazily, and in parallel

* Referential transparency: a call expression can be replaced by its value (or vice versa)
without changing the program

In MapReduce, these functional programming ideas allow:
* Consistent results, however computation is partitioned
®* Re-computation and caching of results, as needed

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

®* Read from standard input and write to standard output!

Mapper [Tell Unix: this is Python)
#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit

The emit function outputs a key and
value as a line of text to standard output

def emit vowels(line):
for vowel in 'aeiou':
count = line.count (vowel)
if count > O:
emit (vowel, count)

for line in sys.stdin: Mapper inputs are lines of text
emit_vowels (line) provided to standard input

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

®* Read from standard input and write to standard output!

Reducer

#!/usr/bin/env python3

import sys Q Takes and returns iterators)

from ucb import main

from mapreduce import emit, group values by key
A

a)
Input: lines of text representing key-value pairs, grouped by

key

Output: Iterator over (key, value_iterator) pairs that give all
\values for each key y

for key, value iterator in group values by key(sys.stdin):
emit (key, sum(value iterator))

What the MapReduce Framework Provides

Fault tolerance: A machine or hard drive might crash

®* The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

* The framework can run multiple copies of a task and keep the result of the one that
finishes first

Network locality: Data transfer is expensive

* The framework tries to schedule map tasks on the machines that hold the data to be
processed

Monitoring: Will my job finish before dinner?!?

* The framework provides a web-based interface describing jobs

