61ALECTURE 27 —
PARALLELISM

Steven Tang and Eric Tzeng
August 8, 2013

8/8/13

Announcements

- Practice Final Exam Sessions
- Worth 2 points extra credit just for taking it
- Sign-up instructions on Piazza (computer based test)
- Friday 9am-12pm
+ Friday 1pm-4pm (waiting on room...)
- Saturday 1pm-4pm
- Sunday 3pm-7pm
- TA led review sessions, following 2 of the exam sessions:
« Friday 4pm-5pm
- Saturday 4pm-5pm
- HW13 out (last true homework!)

I ——
Multiple entities, one shared data

TITLE

Untitled Document
» | B Document &

O Presentation B Test
i Spreadshest BN Notobook
B Form
2 Drawing [Copy of Resume - Creative Shored
B Folder B cuture
Mere " 1% Table (beta)

(@ Graphing Calculator by Desmos.com
B4 Lucidchart Diagram
E8 Mind Map
Pixir Editor
SlideRocket
@ WeVideo for Google Drive

From template

Get more apps

i3 the votes 2011

CPU Performance

Performance of individual CPU cores has largely stagnated in recent years

Graph of CPU clock frequency, an important component in CPU performance:
Clock Frequency a0

stz W Cypress
W DEC

M Fujtsu
.¢.;* -ivae
1000 L WP
Y 1=
M intel
M Motorola
o sk s
o e Wsa
s
. 1M Cyrix
WAL
W NexGen
M Ross
. W ziog
M Centaur

Clook Frequency (MHz)

0

1970 1975 180 1985 1080 1995 2000 2005 2010 2015
Year

http://cpudb.stanford.edu

Parallelism

Applications must be parallelized in order run faster
* Waiting for a faster CPU core is no longer an option

Parallelism is easy in functional programming:
* When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

Referential transparency: a call expression can be replaced by its value (or
vice versa) without changing the program

But not all problems can be solved efficiently using functional programming

Today: Investigate what happens when you share data across different
programs running in parallel

Next time: Easier case of parallelism, using only pure functions

* MapReduce, a framework for such computations

Parallelism in Python

Python provides two mechanisms for parallelism:

Threads execute in the same interpreter, sharing all data

* However, the CPython interpreter executes only one thread at a time, switching
between them rapidly at (mostly) arbitrary points

* Want to know more more? Look up global interpreter lock

* Operations external to the interpreter, such as file and network 1/0, may execute
concurrently

Processes execute in separate interpreters, generally not sharing data
* Shared state can be communicated explicitly between processes

* Since processes run in separate interpreters, they can be executed in parallel as the
underlying hardware and software allow. Threads in Python switched between
rapidly, while processes might actually be run in parallel.

The concepts of threads and processes exist in other systems as well

8/8/13

Terminology Threads

The threading module contains classes that enable threads to be created

- Computer programs are lines of code and synchronized

- When a program is executed, it's considered a process Here is a “hello world” example with two threads:

- You might have 20 processes running at the “same time”, but only from threading import Thread, current_thread
one or two processors

- Processor switches between processes very rapidly, so it looks other = Thread (target=thread say hello, args=())

to us like many programs are running at once Process other. start ()—! Start the other thread
that function

- A process can contain multiple threads thread_say_hello ()

def thread hello(): Function that the new thread should run)

def thread say_hello():
print('hello from', current_thread() .name)

>>> thread_hello() <[Print output is not synchronized,]

hello from Thread-1 N
hello from MainThread 50 can appear in any order

Time

Processes The Problem with Shared State

The multiprocessing module contains classes that enable processes to be Shared state that is mutated and accessed concurrently by multiple threads
created and synchronized can cause subtle bugs
Here is a “hello world” example with two processes: Here is an example with two threads that concurrently update a counter:
from multip ing import P , current process from threading import Thread
def process_hello(): @rlction that the new process should run) counter = [0]

other = Process (target=process_say_hello, args=()) def increment():

other.start ()—_Start the other process Arguments to counter[0] = counter[0] + 1
that function

process_say_hello() other = Thread(target=increment, args=())
other.start()

def process_say_hello(): increment ()
print('hello from', current process().name) other. join () — Wait until other thread completes)
>>> process_hello() T —— — print('count is now', counter[0])
hello from MainProcess rint output is no' synchronized,
>>> hello from Process-1 $0 can appear in any order What is the value of counter [0] at the end?

e e
The Problem with Shared State The Problem with Shared State

from threading import Thread We can see what happens if a switch occurs at the wrong time by trying to

counter = [0] force one in CPython:

def increment(): from threading import Thread
counter[0] = counter[0] + 1 from time import sleep
other = Thread(target=increment, args=()) counter = [0]
other.start()
increment () def increment():
other.join() count = counter[0]
print('count is now', counter([0]) sleep (0) <[Maycause the interpreter to switch threadsj

What is the value of counter [0] at the end? counter[0] = count + 1

other = Thread(target=increment, args=())
other.start()

increment ()

other.join()

print('count is now', counter[0])

Only the most basic operations in CPython are atomic, meaning that they have
the effect of occurring instantaneously

The counter increment is three basic operations: read the old value, add 1 to it,
write the new value

The Problem with Shared State

def increment():
count = counter[0]

sleep(0) <[May cause the interpreter to switch threadsj
counter[0] = count + 1

Given a switch at the s1eep call, here is a possible sequence of operations on
each thread:

Thread @ Thread 1
read counter[0@]: @
read counter[0]: @
calculate @ + 1: 1
write 1 -> counter[0]
calculate @ + 1: 1
write 1 -> counter[@]

The counter ends up with a value of 1, even though it was incremented twice!

Practice

x=1

What are the possible values of x if the following 2 threads are run
concurrently?

>>>x=x*2
>>>x=x+10

8/8/13

Race Conditions

A situation where multiple threads concurrently access the same data, and at
least one thread mutates it, is called a race condition

Race conditions are difficult to debug, since they may only occur very rarely

Access to shared data in the presence of mutation must be synchronized in
order to prevent access by other threads while a thread is mutating the data

Managing shared state is a key challenge in parallel computing

* Under-synchronization doesn’t protect against race conditions and other
parallel bugs

* Over-synchronization prevents non-conflicting accesses from occurring in
parallel, reducing a program’s efficiency

* Incorrect synchronization may result in deadlock, where different threads
indefinitely wait for each other in a circular dependency

We will see some basic tools for managing shared state

Break

I
Synchronized Data Structures

Some data structures guarantee synchronization, so that their operations are
atomic

from queue import Queue { Synchronized FIFO queue J

queue = Queue ()

def increment():
count = queue.get() { Waits until an item is available J
sleep(0)

queue.put(count + 1)
other = Thread(target=increment, args=())
other.start()
queue.put (0) { Add initial value of 0 J

increment ()
other.join()

print('count is now', queue.get())

Manual Synchronization with a Lock

A lock ensures that only one thread at a time can hold it
Once it is acquired, no other threads may acquire it until it is released
from threading import Lock

counter = [0]
counter_lock = Lock()

def increment():
counter_lock.acquire ()
count = counter[0]
sleep(0)
counter[0] = count + 1
counter_lock.release ()

other = Thread(target=increment, args=())
other.start()

increment ()

other.join()

print('count is now', counter[0])

The With Statement

A programmer must ensure that a thread releases a lock when it is done with it
This can be very error-prone, particularly if an exception may be raised

The with statement takes care of acquiring a lock before its suite and
releasing it when execution exits its suite for any reason

def increment():
counter_lock.acquire ()
count = counter[0]
sleep(0)
counter[0] = count + 1
counter_lock.release ()

def increment():
with counter_lock:
count = counter[0]
sleep (0)
counter[0] = count + 1

8/8/13

Simple example of (possible) deadlock

lock1 = Lock()
lock2 = Lock()
def foo():
lock1.acquire()
lock2.acquire()
print(’hello’)
print('world’)
lock1.release()
lock2.release()
def bar():
lock2.acquire()
lock1.acquire()
print('boom’)
lock2.release()
lock2.release()

Example: Web Crawler

A web crawler is a program that systematically browses the Internet

For example, we might write a web crawler that validates links on a website,
recursively checking all links hosted by the same site

A parallel crawler may use the following data structures:
* A queue of URLs that need processing

* Aset of URLs that have already been seen, to avoid repeating work and
getting stuck in a circular sequence of links

These data structures need to be accessed by all threads, so they must be
properly synchronized

The synchronized Queue class can be used for the URL queue

There is no synchronized set in the Python library, so we must provide our own
synchronization using a lock

I —
Synchronization in the Web Crawler

The following illustrates the main synchronization in the web crawler:

def put_url (url):
"""Queue the given URL."""
queue.put (url)

def get url():
""'Retrieve a URL."""
return queue.get()

def already_seen(url):
"""Check if a URL has already been seen."""
with seen_lock:
if url in seen:
return True
seen.add (url)
return False

Example: Particle Simulation

A set of particles all interact with each other (e.g. short range repulsive force)
The set of particles is divided among all threads/processes

Forces are computed from particles’ positions
* Their positions constitute shared data

The simulation is discretized into timesteps

Example: Particle Simulation

In each timestep, each thread/process must: Concurrent reads are OK

i1. Read the positions of every particle (read shared data)

Update acceleration of its own particles (access non-shared data)

2.
3. Update velocities of its own particles (access non-shared data)
‘4.

Update positions of its own particles (write shared data

Steps 1 and 4 conflict with each other Writes are to different locations

8/8/13

Solution #1: Barriers

In each timestep, each thread/process must:

:1. Read the positions of every particle (read shared data)

Update acceleration of its own particles (access non-shared data)

2
3. Update velocities of its own particles (access non-shared data)
4 Update positions of its own particles (write shared data)

Steps 1 and 4 conflict with each other

We can solve this conflict by dividing the program into phases, ensuring that all
threads change phases at the same time

A barrier is a synchronization mechanism that accomplishes this

from threading import Barrier
barrier = Barrier (num_threads)

parrier.wait () —=._ Waits until num_threads threads reach it)

Solution #2: Message Passing
Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num_processes-1 times:
1. Interact with the copy that is present
2. Send the copy to the left, receive from the right

Thus, reads are on copies, so they don’t conflict with writes

Summary

Parallelism is necessary for performance, due to hardware trends

But parallelism is hard in the presence of mutable shared state

® Access to shared data must be synchronized in the presence of
mutation

Making parallel programming easier is one of the central
challenges that Computer Science faces today

Summary

- Many start-ups are in the business of dealing with “Big Data”

+ Use distributed computing and parallel programming to tackle Big
Data

- Big Data: A buzzword used to describe data sets so large that
they reveal facts about the world via statistical analysis.

- 61A gives you a starting point for thinking about computing in
parallel

- 162 makes you implement the operating system that handles
parallel computation

Parallel Computation Patterns

Not all problems can be solved efficiently using functional programming

The Berkeley View project has identified 13 common computational patterns in
engineering and science:

1. Dense Linear Algebra 8. Combinational Logic

2. Sparse Linear Algebra 9. Graph Traversal

3. Spectral Methods 10. Dynamic Programming

4. N-Body Methods 11. Backtrack and Branch-and-Bound
5. Sructured Grids 12. Graphical Models

6. Unstructured Grids 13. Finite State Machines

7. MapReduce

MapReduce is only one of these patterns

The rest require shared mutable state

http://view.eecs.berkeley.edu/wiki/Dwarf_Mine

