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Announcements

- Final exam review session this weekend
- Friday 1-5 pm, room TBA
- See Piazza Poll to vote on additional times
- Potential extra credit — more information later in the week



Logic Language Review

Expressions begin with query or fact followed by relations

Expressions and their relations are Scheme lists

> (fact (parent eisenhower fillmore))
> (fact (parent fillmore abraham))
> (fact (parent abraham clinton))
> (fact (ancestor ?a ?y) (parent ?a ?y))
> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))
> (query (ancestor ?who abraham))

Success!

who: fillmore

who: eisenhower

If a fact has more than one relation, the first is the conclusion, and it is satisfied if the
remaining relations, the hypotheses, are satisfied

If a query has more than one relation, all must be satisfied

The interpreter lists all bindings that it can find to satisfy the query



Hierarchical Facts

Relations can contain relations in addition to atoms

(fact (dog (name abraham) (color white)))
(fact (dog (name barack) (color tan)))
(fact (dog (name clinton) (color white)))
(fact (dog (name delano) (color white)))
(fact (dog (name eisenhower) (color tan)))
(fact (dog (name fillmore) (color brown)))
(fact (dog (name grover) (color tan)))
(fact (dog (name herbert) (color brown)))

vV V V VvV V V V VvV

Variables can refer to atoms or relations

> (query (dog (name clinton) (color ?color)))
Success!
color: white

> (query (dog (name clinton) ?info))
Success!!
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Example: Combining Multiple Data Sources
Which dogs have an ancestor of the same color?

logic> (query (dog (name ?name) (color ?color))
(ancestor ?ancestor ?name)
(dog (name ?ancestor) (color ?color)))

Success!

name: barack color: tan ancestor: eisenhower
name: clinton color: white ancestor: abraham
name: grover color: tan ancestor: eisenhower
name: herbert color: brown ancestor: fillmore




D
Example: Appending Lists

Two lists append to form a third list if:

®* The first list is empty and the second and third are the same

() (abc) (aboc)

* Both of the following hold:
®* List 1 and 3 have the same first element

®* Therest of list 1 and all of list 2 append to form the rest of list 3

ka b c)|(d e f) ka bcde fﬂ

logic> (fact (append-to-form () ?x ?x))

logic> (fact (append-to-form (?a . ?r) ?y (?a . ?z))
(append-to-form ?r ?y ?z))



B
Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations

Unification is finding an assignment to variables that makes two relations the same

( (a by c (a b))

( ’X C °X )

E> True, {x: (a b)}

( (@ b)yc (a b))
( (a?y) ?z (a b))

( (@ b)c (a b)) t>
False

( X ?X X )

[> True, {y: b, z: c}



Unification

Unification unifies each pair of corresponding elements in two relations, accumulating

an assignment

1. Look up variables in the current environment

2. Establish new bindings to unify elements

----------------------------------------
LI LA

b)icia b))

(i PX HCH PX )
| Lookup |
?(a % :
(a_b)

----------------------

{ x: (a b) }

Success!

---------------
* e

-----------------

--------

7~

Symbols/relations without
variables only unify if they
are the same

---------------
o* Yo

{ x

(a b) }

Failure.



Unification with Two Variables

Two relations that contain variables can be unified as well

-------------------------------------------------

llllllllllllllllllllllllllllllllll
lllll

----------------------------------

Substituting values for variables may require multiple steps

lookup('?x") E{) (a ?y ) lookup('?y"') E{) b



Implementing Unification

<
def_,‘.?.’.?.’.'.f.if..(.?..'.....f...'....?f.‘.‘f.)...: .............. ‘ 1. Look up variables in the
. e = lookup(e, env) : current environment
: £ = lookup(f, env) E J
Lif e == f: Symbols/relations
L return True . without variables only unify if
‘elif isvar(e): they are the same
; env.define (e, f) . — *
return True i 2. Establish new bindings to
Eelif isvar (£) : : unify elements. -
env.define(f, e) Unification
. return True recursively unifies
X elif scheme atomp(e) or scheme atomp (f): each
"o return False pair of elements
L8 N

i return unify(e.first, £.first, env) and \
' unify (e.second, f.second, env)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



Searching for Proofs

The Logic interpreter searches the (fact (app () ?x ?x))

space of facts to find unifying facts (fact (app (?a . ?r) ?y (?a . ?2))
and an env that prove the query to (app Y °z ))
be true (query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

---------------------------------------------------

* *
------------

(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app °r (c d) (b c d)))

lllllllllllllllll

%o L
------------------------------------

------------------------------------
*

------------------
-----------------------------------

(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) T

conclusion <- hypothesis
(app ?r2 (c d) (c d))

------------------

fr2: (),ix: (c d)}

*
-----------------

(app () ?x ?X) left: (e . (b. () DD (eb)

Variables are local to facts
and queries




Underspecified Queries

Now that we know about Unification, let’s look at an underspecified query

What are the results of these queries?

> (fact (append-to-form () ?x ?x))

> (fact (append-to-form (?a . ?r) ?x (?a . ?s))
(append-to-form ?r ?x ?s))

> (query (append-to-form (1 2) (3) ?what))
Success!
what: (1 2 3)

> (query (append-to-form (1 2 . ?r) (3) ?what)

Success!

r: () what: (1 2 3)

r: (?s_6) what: (1 2 ?s_6 3)

r: (?s_ 6 ?s 8)what: (1 2 ?s 6 ?s_8 3)

r: (?s_ 6 ?s 8 ?s 10) what: (1 2 ?s 6 ?s 8 ?s 10 3)

r. (?s_ 6 ?s 8 ?s 10 ?s 12) what: (1 2 ?s 6 ?s 8 ?s 10 ?s 12 3)



Search for possible unification

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order

A possible proof is explored exhaustively before another one is considered

def search(clauses, env):
for fact in facts:

env_head <- unify(conclusion of fact, first clause, env)
if unification succeeds:

env_rule <- search(hypotheses of fact, env _head)
result <- search(rest of clauses, env_rule)
yield each result

Some good ideas:
* Limiting depth of the search avoids infinite loops
® Each time a fact is used, its variables are renamed

®* Bindings are stored in separate frames to allow backtracking



Implementing Search

def search(clauses, env, depth):

llllllllllllllllllllllllllllllllllllllllllllllllll

:if clauses is nil:

yield env

* *
-------------------------------------------------
------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

0
---------------------------------------------------------------------------------------------------------------

env_head = Frame (env)
if unify(fact.first, clauses.first, env _head):
for env_rule in search(fact.second, env_head, depth+l):

for result in search(clauses.second, env_rule, depth+l):

lllllllllllllllllllllllllllllllllll

i yleld result : Whatever calls search can
access all yielded results




An Evaluator in Logic

We can define an evaluator in Logic; first, we define numbers:

logic> (fact (ints 1 2))
logic> (fact (ints 2 3))
logic> (fact (ints 3 4))
logic> (fact (ints 4 5))

Then we define addition:
logic> (fact (add 1 ?x ?y) (ints ?x ?y))

logic> (fact (add ?x ?y ?z)
(ints ?x-1 ?x) (ints ?z-1 ?z) (add ?x-1 ?y ?z-1))

Finally, we define the evaluator:

logic> (fact (eval ?x ?x) (ints ?x ?something))
logic> (fact (eval (+ ?0p@ ?opl) ?val)
(add ?a@ ?al ?val) (eval ?op@ ra@) (eval ?opl ?al))
logic> (query (eval (+ 1 (+ ?what 2)) 5))
Success!

what: 2
what: (+ 1 1)



The Halting Problem

Robert Huang
August /7, 2013



Review: Program Generator

A computer program is just a sequence of bits

It is possible to enumerate all bit sequences

from itertools import product

def bitstrings():
size = 0
while True:
tuples = product(('0', '1'"), repeat=size)
for elem in tuples:
yield ''.Jjoin(elem)
size +=1

>>> [next(bs) for _ in range(0, 10)]
[Il, Iel, Ill, l@@l, l@ll, Il@l, lll', Ie@@l, l@ell, '@1@']



Function Streams ‘G_Lf

Given a stream of 1-argument functions, we can construct a function that is not in the
stream, assuming that all functions in the stream terminate

def func not in stream(s):

return lambda n: not s[n] (n)

Inputs
[F]T T T T F T F T F
TI[T]F F F F F T F T
T FI[T]F T F T F T T
T F F[T]T F F T F T
T F T T[F]T F T F T
F F F F TI[F]JF F T T
T F T FF F[F]T T T
F T F T TF TIIFIF T
T F T F F T TFIF]T
Functions F T T T T T T T TIF]



Programs and Mathematical Functions Qf

A mathematical function f(x) maps elements from its input domain D to its output range
R

f:N—{0,1}, f(2) =2 mod 2

A Python function func computes a mathematical function f if the following conditions
hold:

®* func has the same number of parameters as inputs to f
®* functerminates on everyinputinD

®* Thereturn value of func (x) is the same as f(x) for all xin D

def func(x):

return (x * x) $ 2

A mathematical function fis computable if there exists a program (i.e. a Python
function) func that computes it



Computability Qf

Are all functions computable?
More specifically, we hate infinite loops

So if we have a program that computes the following function, we can run it on our
programs to determine if they have infinite loops:

haltsonallinputs : Programs — {0, 1},

1 if P halts all inputs
haltsonallinputs(P) = ! 1alts Ol all INpuLs

0 otherwise



Halts ,_G_Lf

Let’s be less ambitious; we’ll take a program that computes whether or not another
program halts on a specific non-negative integer input:

halts : Programs x N — {0, 1},

halts(P,n) = 1 if P halts on input n

0 otherwise

Is this function computable?
It’s not as simple as just running the program P on n to see if it terminates
How long do we let it run before deciding that it won’t terminate?

However long we let it run before declaring it that it won’t terminate, it might just need
a little more time to finish its computation

Thus, we have to do something more clever, analyzing the program itself



Turing Qf

Let’s assume that we have a Python function halts that computes the mathematical
function halts, written by someone more clever than us

Remember, we can pass a function itself as its argument. Thus, we can consider
halts (£, £);inother words, does function £ halt when given itself as an argument?
(This is just a thought experiment.)

We can then define a new function, turing, which takes in 1 argument.

def turing(f):
if halts(f, £):

while True: # infinite loop
pass
else:
return True # halts

turing will go into an infinite loop if £ halts when given itself as an argument.
Otherwise, turing returns True.



Turing... what?

def turing(f):
if halts(f, f):

while True: # infinite loop
pass
else:
return True # halts
turing (turing) # * what?

If this sounds fishy, it should. Should the call turing (turing) halt or go into an
infinite loop?

°* turing(turing) loops 2 halts (turing, turing) returnstrue

* However, turing (turing) should have halted

®* turing(turing) halts > halts (turing, turing) returns false

* However, turing (turing) should not have halted

We have a contradiction! Our assumption that halts exists is false.



Bitstrings and Functions ,G_Lf

Let’s develop another proof, assuming that we have a halts program that computes
the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to filter out
non-terminating programs from that stream

Assume we have the following Python functions:

def is valid python function(bitstring):
"""Determine whether or not a bitstring represents a
syntactically valid l-argument Python function."""

def bitstring to python function(bitstring):

"""Coerce a bitstring representation of a Python
function to the function itself."""



Bitstrings and Functions Qf

Let’s develop another proof, assuming that we have a halts program that computes
the mathematical function halts

Let’s create a stream of all 1-argument Python functions, then use halts to filter out
non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

def function stream():
"""Return a stream of all valid l-argument Python

functions.""" ( On HW12 )

---------------------------------------------------

bitstring stream =:iterator to stream(bltstrlngs())

S
----------------------------------------------------

valid stream = filter stream(is_valid python function,
bitstring stream)

return map stream(bitstring to python function,
valid stream)



Filtering Out Non-Terminating Programs Qf

With halts, we can’t filter out programs that don’t halt on all input
But we can filter out programs that don’t halt on a specific input

Specifically, let’s make sure that a program halts on its index in the resulting stream of
programs

def make halt checker():
index = 0
def halt checker(fn):
nonlocal index
if halts(fn, index):
index += 1
return True
return False
return halt checker

programs = filter stream(make halt checker(),
function stream())



Developing a Contradiction Qf

We now have a stream of programs that halt when given their own index as input

programs = filter stream(make halt checker(),
function stream())

Recall the following function that produces a function that is not in a given stream:

def func not in stream(s):

return lambda n: not s[n] (n)
Consider the following:
church = func not in stream(programs)

Does church appear anywhere in programs?



Developing a Contradiction Qf

def func not in stream(s):
return lambda n: not s[n] (n)

church = func not in stream(programs)

Does church appear anywhere in programs?

Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in programs on n

So halt checker returns true on church, which means that church isin
programs

If church is in programs, it has an index m; so what does church (m) do?



Developing a Contradiction Qf

def func not in stream(s):
return lambda n: not s[n] (n)

church = func not in stream(programs)

Does church appear anywhere in programs?

Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in programs on n
If church is in programs, it has an index m; so what does church (m) do?

It calls the mth element in programs, which is church itself, onm

This results in an infinite loop, which means halt checker will return false on
church, since it does not halt given its own index



Developing a Contradiction Qf

def func not in stream(s):
return lambda n: not s[n] (n)

church = func not in stream(programs)
We have a contradiction!
halt checker (church) returns true, which means that church is in programs

But if church is in programs, then church (m), wheremis church’s indexin
programs, is an infinite loop, so halt checker (church) returns false

So we made a false assumption somewhere



False Assumption

We assumed we had the following Python functions:
* halts

® is valid python function

* bitstring to python function

Everything else we wrote ourselves
The latter two functions can be built using components of the interpreter

Thus, it is our assumption that there is a Python function that computes halts that is
invalid

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise



The Halting Problem Qf

The guestion of whether or not a program halts on a given input is known as the halting
problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a computer

That is, the mathematical function halts is uncomputable

halts : Programs x N — {0, 1},

halts(P,n) = {

1 if P halts on input n

0 otherwise

We proved that halts is uncomputable in Python, but our reasoning applies to all
languages

It is a fundamental limitation of all computers and programming languages



Uncomputable Functions Qf

It gets worse; not only can we not determine programmatically whether or not a given
program halts, we can’t determine anything “interesting” about the behavior of a
program in general

For example, suppose we had a program prints_something that determines
whether or not a given program prints something to the screen when run on a specific
input:

Then we can write halts:

def halts(fn, 1i):
delete all print calls from fn
replace all returns in fn with prints

return prints something(fn, 1)

Since we know we can’t write halts, our assumption that we can write
prints somethingis false



Conseguences Qf

There are vast consequences from the impossibility of computing halts, or any other
sufficiently interesting mathematical functions on programs

The best we can do is approximation

For example, perfect anti-virus software is impossible

* Anti-virus software must either miss some viruses (false negatives), mark some
innocent programs as viruses (false positives), or fail to terminate on others

We can’t write perfect security analyzers, optimizing compilers, etc.



Incompleteness Theorem Qf

In 1931, Kurt Godel proved that any mathematical system that contains the theory of
non-negative integers must be either incomplete or inconsistent

* Asystem is incomplete if there are true facts that cannot be proven

®* Asystem is inconsistent if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits

®* We can generate all proofs the same way we generated all programs

It is also possible to check the validity of a proof using a computer

®* Given a finite set of axioms and inference rules, a program can check that each
statement in a proof follows from the previous ones

Thus, if a valid proof exists for a mathematical formula, then a computer can find it



Incompleteness Theorem Qf

Given a sufficiently powerful mathematical system, we can write the following formula,
which is a predicate form of the halts function:

H(P,n) = “program P halts on input n”

If H(P, n) is provable or disprovable for all P and n, then we can write a program to
prove or disprove it by generating all proofs and checking each one to see if it proves or
disproves H(P, n)

But then this program would solve the halting problem, which is impossible

Thus, there must be values of P and n for which H(P, n) is neither provable nor
disprovable, or for which an incorrect result can be proven

Thus, there are fundamental limitations not only to computation, but to mathematics
itself!



Interpretation in Python Qf

eval: Evaluates an expression in the current environment and returns
the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing so may
affect the environment.

eval('2 + 2')
exec('def square(x): return x * x')

os.system('python <file>'): Directs the operating system to
invoke a new instance of the Python interpreter.



