61ALECTURE 24 —
STREAMS, GENERATORS

Steven Tang and Eric Tzeng
August 5, 2013

Our Sequence Abstraction

Recall our previous sequence interface:
* A sequence has a finite, known length
* Asequence allows element selection for any element

In the cases we’ve seen so far, satisfying the sequence interface requires
storing the entire sequence in a computer's memory

Problems?
* Infinite sequences - primes, positive integers
* Really large sequences - all Twitter tweets, votes in a presidential election

Implicit Sequences

* We compute each of the elements on demand
* Don’t explicitly store each element

* Called an implicit sequence

A Python Example

Example: The range class represents a regular sequence of integers
®* Therange is represented by three values: start, end, and step
®* The length and elements are computed on demand

®* Constant space for arbitrarily long sequences

end — start
length = max ({ _‘ ,O)
step

elem(k) = start + k - step (for k € [0, length))

A Range Class

class Range (object):
def init (self, start, end=None, step=l):
if end is None:
start, end = 0, start
self.start = start
self.end = end

self.step = step

def len (self):

return max (0, ceil((self.end - self.start) /
self.step))

def getitem (self, k):
if k < 0:
k = len(self) + k
if k < 0 or k >= len(self):
raise IndexError('index out of range')
return self.start + k * self.step

The lterator Interface

An iterator is an object that can provide the next element of a (possibly implicit)
sequence

The iterator interface has two methods:

® _iter (self) returnsan equivalentiterator

® __next (self) returnsthe next elementin the sequence
* If no next, raises StopIteration exception

There are also built in functions next and iter that call the corresponding method on
their argument.

Rangelter

class RangeIter (object):
def init (self, start, end, step):
self.current = start
self.end = end
self.step = step
self.sign = 1 if step > 0 else -1

def next (self):
1if self.current * self.sign >= self.end * self.sign:
raise StopIteration
result = self.current
self.current += self.step

return result

def iter (self):

For now, always returns self!
return self

(Why do we have this

then...?)

Fibonacci

class FibIter (object):
def init (self):

self.prev = -1
self.current =1

def next (self):

self.prev, self.current = (self.current,

self .prev + self.current)
return self.current

def iter (self):
return self

The For Statement

for <name> in <expression>:
<suite>

1. Evaluate the header <expression>, which yields an iterable object.

2. For each element in that sequence, in order:
A. Bind <name> to that element in the first frame of the current environment
B. Execute the <suite>

An iterable object has a method iter thatreturns aniterator

>>> nums, sum = [1, 2, 3], ©
>>> items = nums. iter ()

>>> nums, sum = [1, 2, 3], © >>> try:
>>> for item in nums: while True:
sum += item item = items. next ()
>>> sum sum += item
6 except StopIlteration:
pass
>>> sum

Generators and Generator Functions

Generators:

* Aniterator backed by a function, called a generator function

Generator Functions:
* A function that returns a generator
® Can tell by looking for the yield keyword

* Another example of a continuation

A simple generator

def ones generator():
while True:
yield 1

- The yield keyword is what marks this as a generator function

- Calling this function won’t do anything besides return a generator
object (an iterator)

- Each time we ask for a value from the iterator, it runs the function
until it reaches a yield statement and gives whatever value was
yielded

- The next time we ask for a value, it picks up where it left off
- This iterator will keep giving you ones forever!

lterating over an Rlist

We can iterate over a sequence even ifithasno iter method

Pythonuses getitem instead, iterating until IndexError is raised

class Rlist(object):
def init (self, first, rest=empty):
self.first, self.rest = first, rest

def getitem (self, k):
if k == 0:
return self.first
if self.rest is Rlist.empty:
raise IndexError ('index out of range')
return self.rest[k - 1]

: , : , 2
How long does it take to iterate over an Rlist of nitems? ©O(n~)

lterating over an Rlist

We can define an iterator for Rlists using a generator function

class Rlist(object):
def init (self, first, rest=empty):
self.first, self.rest = first, rest

def getitem (self, k):

if k ==
return self.first
Generator if self.rest is Rlist.empty:
method (returns raise IndexError ('index out of range')
an iterator) return self.rest[k - 1]

def iter (self):
current = self
while current is not Rlist.empty:
yield current.first
current = current.rest

How long does it take to iterate over an Rlist of nitems? ©O(n)

Fibonacci Generator

A generator function that lazily computes the Fibonacci sequence:

def fib generator():
yield O
prev, current = 0, 1
while True:

yield current
prev, current = current, prev + current

A generator expression is like a list comprehension, but it
produces a lazy generator rather than a list:

double fibs = (fib * 2 for fib in fib generator())

Generator Semantics

def fib generator():
yield 0O
prev, current =0, 1
while True:
yield current
prev, current = current, prev + current

Calling a generator function returns an iterator that stores a frame for the
function, its body, and the current location in the body

Calling next on the iterator resumes execution of the body at the current
location, until a yield is reached

The yielded value is returned by next, and execution of the body is halted
until the next call to next

When execution reaches the end of the body, a StopIteration is raised

B
Map and Filter

def map gen(fn, iterable):
1§?§at;r =.1ter(1terable) /e nced

walle lrue. to check if the
yield fn (next (iterator))

iterator still has
elements?
def filter gen(fn, iterable):

iterator = iter (iterable)
while True:
item = next(iterator)
if fn(item):
yield item

Bitstring Generator

from itertools import product

def bitstrings():
"""Generate bitstrings in order of increasing
size.

>>> bs = bitstrings|()
>>> [next(bs) for _ in range(0, 8)]
[+, o, 1+, 'oo0', 'o1', '10', '11', '000']
size = 0
while True:
tuples = product(('0', '1l'"'), repeat=size)
for elem in tuples:
yield ''.join (elem)
size +=1

Break

Infinite Sequences with Selection

We now have implicit sequences in the form of iterators
Such sequences may be infinite, and they might be lazily evaluated
What if we want to support element selection on infinite sequences?

Let’s try creating a 1ist out of an infinite sequence
>>> list(fib_generator())

Oops! Infinite loop!
A list provides immediate access to all elements
But an R1ist only provides immediate access to its first element

The rest can be computed lazily!

Streams

A stream is a recursive list with an explicit first element and a lazily
computed rest-of-the-list

class Stream(Rlist):
"""A lazily computed recursive list."""
def init (self, first,
compute rest=lambda: Stream.empty) :

assert callable (compute rest)
self.first = first
self ,compute rest = compute rest
self,_ rest = None

@property \k “Please don't reference directly”)
def rest(self):
"""Return the rest of the stream, computing it if
necessary."""
if self. compute rest is not None:
self. rest = self. compute rest()
self. compute rest = None
return self. rest

Integer Streams

An integer stream is a stream of consecutive integers

An integer stream starting at k consists of k and a function that
returns the integer stream starting at k+1

def integer stream(first=l):
"""Return a stream of consecutive integers, starting
with first.

>>> s = integer stream(3)
>>> s.first
3
>>> s.rest.first
4
def compute rest():
return integer stream(first+l)
return Stream(first, compute rest)

Mapping a Function over a Stream

Mapping a function over a stream applies a function only to the
first element right away

The rest is computed lazily

def map stream(fn, s):
"""Map fn over the elements of stream s."""

if s is Stream.empty:
return s

This body is not executed until
compute restis called

gSUEEEEEERER e N L R RN YL TN
*

* .
®ssmssnsnnsnnnnnnnnnnnnn e T N SN N NN NN AN NN NN NN NN NN EEEEEEEEEEEEEEEEEEEEEEEEE®

return Stream(fn(s.first), compute rest)
N\

[Not called yet J

Filtering a Stream

When filtering a stream, processing continues until an element is
kept in the output

def filter stream(fn, s):
"""Filter stream s with predicate function fn."""

if s is Stream.empty:
return s

def compute rest():
return filter stream(fn, s.rest)

if fn(s.first):

return Stream(s.first, compute rest)
else:

return compute rest()

Find an element in the
rest of the stream

A Stream of Primes

The stream of integers not divisible by any k <=n is:
®* The stream of integers not divisible by any k <n,
* Filtered to remove any element divisible by n

®* This recurrence is called the Sieve of Eratosthenes

2, 3,x\ 5,\6\7,\&\\9\h‘ 11, 1 13
A A

def primes (istream) :
"""Return a stream of primes, given a stream of
consecutive integers."""
def compute rest():
not divisible = lambda x: x % istream.first != 0
return primes (filter stream(not divisible,
istream.rest))
return Stream(istream.first, compute rest)

D
Try it

- Write a function add_streams that takes two streams and returns

a new stream formed by summing corresponding elements in the
argument streams.

- Bonus: see if you can use add_streams to define to define the
Fibonacci stream!

