
Review

Questions

What Would Python Print?

Tuples, Lists, Dictionaries
>>> a = (1, 2, 3, 4)

>>> a[::-1]

>>> a = a[:0:-1]

>>> a

>>> b = [1, 2, 3, 4]

>>> b[3] = a[1:]

>>> b

>>> b[3][0] = a[:-2]

What Would Python Print?

Tuples, Lists, Dictionaries
>>> a = (1, 2, 3, 4)

>>> a[::-1]

(4, 3, 2, 1)

>>> a = a[:0:-1]

>>> a

(4, 3, 2)

>>> b = [1, 2, 3, 4]

>>> b[3] = a[1:]

>>> b

[1, 2, 3, (3, 2)]

>>> b[3][0] = a[:-2]

TypeError: 'tuple' object does not support item assignment

Coding Practice

Recursion
Write a function deep_map(f, lst) which applies a one-argument function

onto every element in the given list. If an element is itself a list, then you

should recursively apply the function onto each of its elements. You should

NOT return anything—instead, mutate the original list (and any nested lists).

def deep_map(f, lst):

 """

 >>> lst = [1, 2, [3, 4, [5], 6], 7, [], 8]

 >>> deep_map(lambda x: x * x, lst)

 >>> lst

 [1, 4, [9, 16, [25], 36], 49, [], 64]

 """

Coding Practice

Recursion
def deep_map(f, lst):

 if lst:

 last = lst.pop()

 if type(last) is list:

 deep_map(f, last)

 else:

 last = f(last)

 deep_map(f, lst)

 lst.append(last)

Coding Practice

Nonlocal
Write a function that returns a function that returns the last thing it received (the

first time it's called, it returns '...')

>>> slowpoke = make_delayed_repeater()

>>> slowpoke("hi")

...

>>> slowpoke("hello?")

hi

>>> slowpoke("stop repeating what I'm saying")

hello?

Coding Practice

Nonlocal
def make_delayed_repeater():

 last = '...'

 def delayed_repeater(phrase):

 nonlocal last

 last, to_return = phrase, last

 return to_return

 return delayed_repeater

Coding Practice

Equality vs. Identity
>>> l1, l2 = list(range(5)), list(range(5))

>>> l1 == l2

>>> l1 is l2

>>> l2 = l1

>>> l1 is l2

>>> d1, d2 = {1: 3, 5: 7}, {5: 7, 1: 3}

>>> d1 == d2

>>> d1 is d2

Coding Practice

Equality vs. Identity
>>> l1, l2 = list(range(5)), list(range(5))

>>> l1 == l2

True

>>> l1 is l2

False

>>> l2 = l1

>>> l1 is l2

True

>>> d1, d2 = {1: 3, 5: 7}, {5: 7, 1: 3}

>>> d1 == d2

True

>>> d1 is d2

False

What Would Python Print?

OOP
class Foo(object):

 baz = 0

 bar = 'something'

 def __init__(self):

 self.bar = 'anything'

 self.__qux = self.baz

 Foo.baz += 1

 @property

 def foo(self):

 return self.__qux

>>> a = Foo()

>>> a.bar

>>> a.__qux

>>> a.foo

>>> Foo.baz

>>> b = Foo()

>>> b.foo

What Would Python Print?

OOP
class Foo(object):

 baz = 0

 bar = 'something'

 def __init__(self):

 self.bar = 'anything'

 self.__qux = self.baz

 Foo.baz += 1

 @property

 def foo(self):

 return self.__qux

>>> a = Foo()

>>> a.bar

'anything'

>>> a.__qux

AttributeError

>>> a.foo

0

>>> Foo.baz

1

>>> b = Foo()

>>> b.foo

1

Coding Practice

Trees
Given a binary tree (with left and right), implement a function sum_tree, which

adds up all the items (assumed to be numbers) in the tree.

def sum_tree(tree):

 """ Your Code Here """

Coding Practice

Trees
def sum_tree(tree):

 if tree is None:

 return 0

 else:

 left = sum_tree(tree.left)

 right = sum_tree(tree.right)

 return tree.entry + left + right

Coding Practice

Trees
Implement a function same_shape, which takes two binary trees and checks if

they have the same shape (not if they have the same items).

def same_shape(tree1, tree2):

 """ Your Code Here """

Coding Practice

Trees
def same_shape(tree1, tree2):

 if tree1 is None and tree2 is None:

 return True

 elif tree1 is None or tree2 is None:

 return False

 left = same_shape(tree1.left, tree2.left)

 right = same_shape(tree1.right, tree2.right)

 return left and right

Orders of Growth
def foo(n):

 if n <= 1000:

 return n

 for i in range(n):

 print(i)

 for i in range(n*n):

 print(i)

θ(?)

def bar(n):

 if n < 3:

 return n

 return bar(n // 3)

θ(?)

def blip(n):

 for i in range(n//2):

 bar(n)

θ(?)

def zeta(n):

 if n <= 1:

 return 1

 return zeta(n-1) + \

zeta(n-2)

θ(?)

Orders of Growth
def foo(n):

 if n <= 1000:

 return n

 for i in range(n):

 print(i)

 for i in range(n*n):

 print(i)

θ(n^2)

def bar(n):

 if n < 3:

 return n

 return bar(n // 3)

θ(log n)

def blip(n):

 for i in range(n//2):

 bar(n)

θ(n*log n)

def zeta(n):

 if n <= 1:

 return 1

 return zeta(n-1) + \

zeta(n-2)

θ(2^n)

Coding Practice

Scheme
Write a function append that takes in a list a value and returns a list with that

value appended.

(define (append lst v)

 ‘yourcodehere)

Coding Practice

Scheme
(define (append lst v)

 (cond ((null? lst)

 (list v))

 (else (cons (car lst) (append (cdr lst) v))))

Coding Practice

Scheme
Implement the insert function in Scheme, which inserts item at index, if index is

within the bounds of the list, or at the end of the list otherwise.

(define (insert lst item index)

 ‘yourcodehere)

Coding Practice

Scheme
(define (insert lst item index)

 (cond ((null? lst)

 (list item))

 ((= index 0)

 (cons item lst))

 (else (cons (car lst)

 (insert (cdr lst) item (- index 1))))))

Coding Practice

Extras
Write a function find_path that takes in a dictionary, friends mapping every

person to the list of their friends, and returns whether it is possible to move

from the person start to the person finish by following friend relationships.

def find_path(friends, start, finish):

 """

 >>> allfriends = {"Steven" : [“Eric”],

 "Eric": ["Mark", "Jeffrey", "Brian"],

 "Albert" : ["Robert", "Andrew", “Leonard”]}

 >>> find_path(allfriends, "Eric", "Robert")

 True

 >>> find_path(allfriends, "Steven", "Robert")

 False

 """

Coding Practice

Extras
def find_path(friends, start, finish):

 def find_path2(visited, start):

 if start == finish:

 return True

 if start in friends:

 for vertex in friends[start]:

 if vertex not in visited:

 visited.append(vertex)

 if find_path2(visited, vertex):

 return True

 return False

 return find_path2([], start)

Coding Practice

Extras
Implement a function flatten that takes in a scheme list and removes any

nested lists, replacing them with their elements. (Does not have to work for

lists nested in nested lists)

STK> (define a (list 1 (list 2 3 4) 5 6 (list 7 8)))

STK> a

(1 (2 3 4) 5 6 (7 8))

STK> (flatten a)

(1 2 3 4 5 6 7 8)

(define (flatten lst)

 ‘yourcodehere)

Coding Practice

Extras
(define (flatten lst)

 (cond ((null? lst) lst)

 ((list? (car lst))(append (flatten (car lst))

(flatten (cdr lst))))

 (else (cons (car lst) (flatten (cdr lst))))))

