61A LECTURE 22 -TAIL CALLS, ITERATORS

Steven Tang and Eric Tzeng July 30, 2013

Announcements

- · Homework 12 due Thursday, not Monday.
 - · Take the time to get started on the project instead!

Almost done with Scheme

- · Scheme is a lot simpler than Python, so it has a lot less features than Python does
- · Today we're talking about a feature that Scheme has that Python doesn't!

Iteration Versus Recursion in Python

In Python, recursive calls always create new active frames

```
Time
                                                             Space
def factorial(n):
                                                 \Theta(n)
                                                              \Theta(n)
    if n == 0:
          return 1
    return n * factorial(n - 1)
                                                 \Theta(n)
                                                             \Theta(1)
def factorial(n):
    total = 1
while n > 0:
     n, total = n - 1, total * n
return total
```

Iteration and Recursion
Reminder: Iteration is a special case of recursion

Idea: The state of iteration can be passed as parameters

```
def factorial(n):
    total = 1 While n > 0: Local names become...
       n, total = n - 1, total * n
    return total
                   Parameters in a recursive function
def factorial(n, total):
    if n == 0:
    return factorial(n - 1, total * n)
```

But this converted version still uses linear space in Python

Tail Recursion

From the $Revised^7$ Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be properly tail-recursive. This allows the execution of an iterative computation in constant space, even if the iterative computation is described by a syntactically recursive procedure."

```
(define (factorial n total)
 (if (= n \ 0) total
     def factorial(n, total):
   if n == 0:
      return total
   return factorial(n - 1, total * n)
```

Tail Calls

A procedure call that has not yet returned is *active*. Some procedure calls are *tail calls*. A Scheme interpreter should support an unbounded number of active tail calls.

A tail call is a call expression in a tail context:

- The last body sub-expression in a lambda expression
- Sub-expressions 2 & 3 in a tail context if expression
- All non-predicate sub-expressions in a tail context cond
- The last sub-expression in a tail context and or or
- The last sub-expression in a tail context begin

Eval with Tail Call Optimization

The return value of the tail call is the return value of the current procedure call.

Therefore, tail calls shouldn't increase the environment size.

In the interpreter, recursive calls to **scheme_eval** for tail calls must instead be expressed iteratively.

Break!

Guido van Rossum "Benevolent Dictator for Life"

- · Remember this guy?
- · Guido on tail call optimization:
- "Personally, I think it is a fine feature for some languages, but I don't think it fits Python"
- · Why do you think this is?

Our Sequence Abstraction

Recall our previous sequence interface:

- A sequence has a finite, known length
- A sequence allows element selection for any element

In the cases we've seen so far, satisfying the sequence interface requires storing the entire sequence in a computer's memory

Problems?

- Infinite sequences primes, positive integers
- Really large sequences all Twitter tweets, votes in a presidential election

The Sequence of Primes

Think about the sequence of prime numbers:

- What's the first one?
- The next one?
- The next one?
- How about the next two?
- How about the 105th prime?
 - Our sequence abstraction would give an instant answer

Implicit Sequences

- We compute each of the elements on demand
- · Don't explicitly store each element
- Called an implicit sequence

A Python Example

Example: The range class represents a regular sequence of integers

- The range is represented by three values: start, end, and step
- The length and elements are computed on demand
- Constant space for arbitrarily long sequences

$$\begin{split} length &= max \left(\left\lceil \frac{end - start}{step} \right\rceil, 0 \right) \\ elem(k) &= start + k \cdot step \quad \text{(for } k \in [0, length) \text{)} \end{split}$$

The Iterator Interface

An iterator is an object that can provide the next element of a (possibly implicit) sequence

The iterator interface has two methods:

- __iter__(self) returns an equivalent iterator
- __next__(self) returns the next element in the sequence
 - If no next, raises StopIteration exception

There are also built in functions ${\bf next}$ and ${\bf iter}$ that call the corresponding method on their argument.


```
Rangelter
class RangeIter(object):
    def __init__(self, start, end, step):
        self.current = start
        self.current = start
        self.step = step
        self.sign = 1 if step > 0 else -1

def __next__(self):
        if self.current * self.sign >= self.end * self.sign:
            raise StopIteration
        result = self.current
        self.current += self.step
        return result

def __iter__(self):
        return self
```