61ALECTURE 22 —
TAIL CALLS, ITERATORS

Steven Tang and Eric Tzeng
July 30, 2013

7/31/13

Announcements

- Homework 12 due Thursday, not Monday.
- Take the time to get started on the project instead!

Almost done with Scheme

- Scheme is a lot simpler than Python, so it has a lot less features
than Python does

- Today we're talking about a feature that Scheme has that Python
doesn't!

Iteration Versus Recursion in Python

In Python, recursive calls always create new active frames

Time Space
def factorial(n): @(’I’L) @(TL)
if n == 0:
return 1
return n * factorial(n - 1)
def factorial(n): @(TL) @(1)

total =1
while n > 0:

n, total = n - 1, total * n
return total

lteration and Recursion

Reminder: lteration is a special case of recursion
Idea: The state of iteration can be passed as parameters

def factorial(n):

total =1

while n.
otali=n - 1, total * n

n,i
return tota!

LvParameters in a recursive function)

def factorial(n,i tota
ifn == 0:
return total

return factorial(n - 1, total * n)

But this converted version still uses linear space in Python

Tail Recursion

From the Revised’ Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be properly tail-recursive.
This allows the execution of an iterative computation in constant space,
even if the iterative computation is described by a syntactically recursive
procedure."

(define (factorial n total)
(if (= n 0) total
(factorial (- n 1)
(* total n))))

def factorial(n, total):
if n == 0:
return total
return factorial(n - 1, total * n)

e
Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls.

A tail call is a call expression in a tail context:

* The last body sub-expression in a lambda expression

* Sub-expressions 2 & 3 in a tail context if expression

* All non-predicate sub-expressions in a tail context cond
* The last sub-expression in a tail context and or or

* The last sub-expression in a tail context begin

(define (factorial n total)
! = n 0) total
factorial (- n 1)
(* total n)))

7/31/13

I —
Example: Length of a List

(define (length s)
=(if _(null? s) 0 (Notatail context)

j(+ 1 |(length (cdr s))))))

A call expression is not a tail call if more computation is still required in the calling
procedure.

Linear recursions can often be rewritten to use tail calls.
(define (length-tail s)

(define (length-iter s n)

(if (null? s) n

(_ Recursive callisatail call)

E:(length—iter (cdr s) (+ 1 n)):)).:

I ——
Eval with Tail Call Optimization

The return value of the tail call is the return value of the current
procedure call.

Therefore, tail calls shouldn't increase the environment size.

In the interpreter, recursive calls to scheme_eval for tail calls must
instead be expressed iteratively.

I —
Logical Special Forms, Revisited

Logical forms may only evaluate some sub-expressions.
* If expression: (if <predicate> <consequent> <alternative>)

* Andandor: (and <e1> ... <en>), (or <e1> ... <en>)

(<pn> <en>) (else <e>))

(do_if_form)

i®* Choose a sub-expression: <consequent> or <alternative>

_scheme_eval

E.g., replace (if false 1 (+ 2 3)) with (+ 2 3) and iterate.

* Condexpr'n: (cond (<p1> <e1>)

The value of an if expression is the value of a sub-expression.

{e Evaluate the predicate.

* Evaluate that sub-expression in place of the whole expression.

Evaluation of the tail context does not require a recursive call.

Example: Reduce

(define (reduce procedure s start)

{(if (null? s) start

;(reduce procedure
(cdr s)
Gprocedure start (car s)a)))

Recursive call is a tail call.

Other calls are not; constant space depends on procedure.

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (543 2)

e
Example: Map

(define (map procedure s)
(define (map-iter procedure s m)
(if (null? s) m
(map-iter procedure
(cdr s)
(cons (procedure (car s)) m))))
(reverse (map-iter procedure s nil)))

(define (reverse s)
(define (reverse-iter s r)
(if (null? s) r
(reverse-iter (cdr s)
(cons (car s) r))))
(reverse-iter s nil))

Break!

- Remember this guy?
+ Guido on tail call optimization:
- “Personally, | think it is a fine

feature for some languages, but |
don't think it fits Python”

- Why do you think this is?

Guido van Rossum
“Benevolent Dictator for Life”

7/31/13

Our Sequence Abstraction

Recall our previous sequence interface:
* Asequence has a finite, known length
* Asequence allows element selection for any element

In the cases we’ve seen so far, satisfying the sequence interface requires
storing the entire sequence in a computer's memory

Problems?
* Infinite sequences - primes, positive integers
* Really large sequences - all Twitter tweets, votes in a presidential election

The Sequence of Primes
Think about the sequence of prime numbers:

* What's the first one?

* The next one?

® The next one?

* How about the next two?

* How about the 105t prime?

* Our sequence abstraction would give an instant answer

Implicit Sequences

* We compute each of the elements on demand
* Don’t explicitly store each element

* Called an implicit sequence

[
A Python Example

Example: The range class represents a regular sequence of integers
* The range is represented by three values: start, end, and step
* The length and elements are computed on demand

* Constant space for arbitrarily long sequences

nd — start
length = max (’Vu] ,O)
step

elem(k) = start + k - step (for k € [0,length))

[
A Range Class

class Range (object) :
def _ init (self, start, end=None, step=1):
if end is None:
start, end = 0, start
self.start = start
self.end = end
self.step = step

def _ len__ (self):
return max (0, ceil((self.end - self.start) /
self.step))

def getitem (self, k):
ifk<o0:
k = len(self) + k
if k < 0 or k >= len(self):
raise IndexError('index out of range')
return self.start + k * self.step

The lterator Interface
An iterator is an object that can provide the next element of a (possibly implicit)
sequence

The iterator interface has two methods:

¢ __iter_ (self) returnsan equivalentiterator

* __next__ (self) returnsthe next elementin the sequence

* If no next, raises StopIteration exception
There are also built in functions next and iter that call the corresponding method on
their argument.

7/31/13

Rangelter

class Rangelter (object):
def __init (self, start, end, step):
self.current = start
self.end = end
self.step = step
self.sign = 1 if step > 0 else -1

def next (self):
if self.current * self.sign >= self.end * self.sign:
raise StopIteration
result = self.current
self.current += self.step
return result

def iter_ (self):

return self

Fibonacci

class FibIter (object):

def __init (self):

self.prev = -1
self.current = 1

def _ next (self):
self.prev, self.current = (self.current,
self.prev + self.current)
return self.current

def __ iter_ (self):
return self

The For men
ero f§} a<ESme>eint <expression>:
<suite>
1. Evaluate the header <expression>, which yields an iterable object.
2. For each element in that sequence, in order:
A. Bind <name> to that element in the first frame of the current environment
B. Execute the <suite>
An iterable object has a method __iter__thatreturns an iterator

>>> nums, sum = [1, 2, 3], @
>>> items = nums.__iter__ ()

>>> nums, sum = [1, 2, 3], © >>> try:
>>> for item in nums: while True:
sum += item item = items.__next__ ()
>>> sum sum_+= item
6 except StopIteration:

pass
>>> sum
6

