
61A LECTURE 21 –

INTERPRETERS
Steven Tang and Eric Tzeng

July 30, 2013

Announcements

• Project 4 out today

• Start soon – most time consuming project!

• Homework 11 due date pushed to Friday

• Relatively short assignment. Great introduction to the project!

• Homework 12 out later today.

The Scheme-Syntax Calculator Language

A subset of Scheme that includes:

• Number primitives

• Built-in arithmetic operators: +, -, *, /

• Call expressions

> (+ (* 3 5) (- 10 6))
19
> (+ (* 3

(+ (* 2 4)
(+ 3 5)))

(+ (- 10 7)
6))

57

Input on multiple lines

did not work in minicalc.

Allowing for input on multiple lines

• read_exp raises a SyntaxError if the input is not completely

well formed

• Another version of Calculator: use scalc instead of minicalc.

• scalc makes use of the yield statement, which we will talk

about next week.

• Simply know that scalc is essentially minicalc, but allows for

input on multiple lines.

• scalc contains functions analogous to what’s used in project 4

Semi-Review: Parsing in scalc

'(+ 1'

' (- 23)'

' (* 4 5.6))'

lines expression

A parser takes a sequence of lines and returns an expression.

Lexical
analysis

tokens
Syntactic
analysis

'(', '+', 1

'(', '-', 23, ')'

'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))

printed as

• Iterative process

• Checks for malformed tokens

• Determines types of tokens

• Processes one line at a time

• Tree-recursive process

• Balances parentheses

• Returns tree structure

• Processes multiple lines

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression,
which may be nested.

Each call to scheme_read consumes the input tokens for exactly one
expression. scheme_read and exp_read are analogous.

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combines them as
pairs

http://inst.eecs.berkeley.edu/~cs61a/book/examples/scalc/scheme_reader.py.html

http://inst.eecs.berkeley.edu/~cs61a/book/examples/scalc/scheme_reader.py.html

Expression Trees

'(+ 2 2)'

lines value

A basic interpreter has two parts: a parser and an evaluator

Parser expression Evaluator

4

Pair('*', Pair(Pair(+, ...))

(* (+ 1 (- 23) (* 4 5.6)) 10)

printed as

'(* (+ 1'
' (- 23)'
' (* 4 5.6))’
' 10)'

Pair('+', Pair(2, Pair(2, nil)) 4

Lines forming a
Scheme expression

A number or a Pair with an
operator as its first element

A number

scheme_reader.py scalc.py

Evaluation in Calculator
Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule

Primitive expressions are evaluated directly

Call expressions are evaluated recursively:

• Evaluate each operand expression

• Collect their values as a list of arguments

• Apply the named operator to the argument list

The Structure of an Evaluator

Apply

EvalBase cases:
• Primitive values (numbers)
• Look up values bound to symbols

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Built-in primitive procedures

Recursive calls:
• Eval(body) of user-defined proc's

Requires an
environment for

name lookup

Creates new environments
when applying user-
defined procedures

Break

Scheme Evaluation
The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment

• Self-evaluating primitives are called atoms in Scheme

• All other legal expressions are represented as Scheme lists

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special
forms are

identified by
the first list

element

Anything not
a known

special form
is a call

expression

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

Logical Special Forms
Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>

• Evaluate that sub-expression in place of the whole expression.

do_if_form

scheme_eval

Quotation
The quote special form evaluates to the quoted expression

(quote <expression>)

Evaluates to the <expression> itself, not its value!

'<expression> is shorthand for (quote <expression>)

The scheme_read parser converts shorthand to a combination

(quote (1 2))

'(1 2)

Lambda Expressions
Lambda expressions evaluate to user-defined procedures

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure(object):

def __init__(self, formals, body, env):

self.formals = formals

self.body = body

self.env = env

A scheme list of symbols

A scheme expression

A Frame instance

Frames and Environments
A frame represents an environment by having a parent frame

Frames are Python instances with methods lookup and
define

In Project 4, Frames do not hold return values

g: Global frame

y

z

3

5

[parent=g]

x

z

2

4

Define Expressions
Define expressions bind a symbol to a value in the first frame of the current
environment

(define <name> <expression>)

(define (<name> <formal parameters>) <body>)

(define <name> (lambda (<formal parameters>) <body>))

Procedure definition is a combination of define and lambda

Evaluate the <expression>

Bind <name> to the result (define method of the current Frame)

(define x 2)

Applying User-Defined Procedures
Create a new frame in which formal parameters are bound to argument
values, whose parent is the env of the procedure

Evaluate the body of the procedure in the environment that starts with this
new frame

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

Break: Eval/Apply in Lisp 1.5

Dynamic Scope
The way in which names are looked up in Scheme and Python is called lexical
scope (or static scope)

Lexical scope: The parent of a frame is the environment in which a procedure
was defined

Dynamic scope: The parent of a frame is the environment in which a
procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame

Dynamic scope: The parent for f's frame is g's frame

Error: unknown identifier: y

13

mu

Special form to create dynamically
scoped procedures

Practice

y = 5

def foo(x):

return x + y

def garply(y):
return foo(2)

What does garply(10) return? What about if Python used

dynamic scoping?

Functional Programming
All functions are pure functions

No re-assignment and no mutable data types

Name-value bindings are permanent

Advantages of functional programming:

• The value of an expression is independent of the order in which sub-
expressions are evaluated

• Sub-expressions can safely be evaluated in parallel or lazily

• Referential transparency: The value of an expression does not change
when we substitute one of its sub-expression with the value of that
sub-expression

