
CS61A Lecture 26

Amir Kamil and Hamilton Nguyen
UC Berkeley

March 22, 2013

o HW9 out tonight, due 4/3

o Ants extra credit due 4/3
¨ See Piazza for submission instructions

Announcements

The data structures we cover in 61A are used everywhere in CS

More about data structures in 61B

Example: recursive lists (also called linked lists)

• Operating systems

• Interpreters and compilers

• Anything that uses a queue

The Scheme programming language, which we will learn soon,
uses recursive lists as its primary data structure

Data Structure Applications

Example: Environments

http://goo.gl/8DNY1

http://goo.gl/8DNY1

Trees with Internal Node Values

class Tree(object):
 def __init__(self, entry, left=None, right=None):
 self.entry = entry
 self.left = left
 self.right = right

def fib_tree(n):
 if n == 1:
 return Tree(0)
 if n == 2:
 return Tree(1)
 left = fib_tree(n - 2)
 right = fib_tree(n - 1)
 return Tree(left.entry + right.entry, left, right)

Implementing Sets

•
•
• I

•

Sets as Unordered Sequences

This is how we implemented dictionaries

def empty(s):
 return s is Rlist.empty

def set_contains(s, v):
 if empty(s):
 return False
 elif s.first == v:
 return True
 return set_contains(s.rest, v)

Sets as Unordered Sequences

def adjoin_set(s, v):
 if set_contains(s, v):
 return s
 return Rlist(v, s)

def intersect_set(set1, set2):
 f = lambda v: set_contains(set2, v)
 return filter_rlist(set1, f)

def union_set(set1, set2):
 f = lambda v: not set_contains(set2, v)
 set1_not_set2 = filter_rlist(set1, f)
 return extend_rlist(set1_not_set2, set2)

Time order of growth

The size of
the set

Assume sets are
the same size

Sets as Ordered Sequences

Order of growth?

def set_contains2(s, v):
 if empty(s) or s.first > v:
 return False
 elif s.first == v:
 return True
 return set_contains(s.rest, v)

Set Intersection Using Ordered Sequences

Order of growth?

def intersect_set2(set1, set2):
 if empty(set1) or empty(set2):
 return Rlist.empty
 e1, e2 = set1.first, set2.first
 if e1 == e2:
 rest = intersect_set2(set1.rest, set2.rest)
 return Rlist(e1, rest)
 elif e1 < e2:
 return intersect_set2(set1.rest, set2)
 elif e2 < e1:
 return intersect_set2(set1, set2.rest)

Tree Sets

•
•

Membership in Tree Sets

•
•
def set_contains3(s, v):
 if s is None:
 return False
 elif s.entry == v:
 return True
 elif s.entry < v:
 return set_contains3(s.right, v)
 elif s.entry > v:
 return set_contains3(s.left, v)

9

If 9 is in the set, it
is in this branch

Order of growth?

Adjoining to a Tree Set

7

8

Right! Left! Right!

None None

8

None

Stop!

8

What Did I Leave Out?

•
•

•
•

oWhy things go wrong
oWhat can we do about this

Social Implications / Programming Practices

oMedical imaging
device

Therac-25 Case Study

oWhat happened?
o 6 serious injuries
o 4 deaths
o Otherwise effective – saved hundreds of lives

Therac-25 Case Study

o Social responsibility in engineering
o First real incident of fatal software failure
o Bigger issue
¨ No bad guys
¨ Honestly believed there was nothing wrong

Lesson to be learned

o Other engineering fields: clear sense of
degradation and decay

o Can software become brittle or fractured?

“Software Rot”

oAll software is part of a bigger system
o Software degrades because:
¨ Other piece of software changes
¨ Hardware changes
¨ Environment changes

A bigger picture

Ex: Compatibility Issues

o The makers of the Therac did not fully
understand the complexity of their software

o Complexity of constructs in other fields more
apparent

A bigger issue

o This program can delete any file you
can

A “simple” program

o Abundant user interface issues

o Cursor position and field entry
o Default values
o Too many error messages

Complexity in the Therac-25

Too many error messages

Too many error messages

o No atomic test-and-set
o No hardware interlocks

(More) Complexity in the Therac-25

o Know your user
o Fail-Soft (or Fail-Safe)
o Audit Trail
o Correctness from the start
o Redundancy

How can we solve these things?

Fail-Soft (or Fail-Safe)

def mutable_rlist():
 def dispatch(message, value=None):
 nonlocal contents
 if message == 'first':
 return first(contents)

 if message == 'rest':
 return rest(contents)

 if message == 'len':
 return len_rlist(contents)

 ...
 else:

print('Unknown message')
 return dispatch

o Edsger Dijkstra: “On the Cruelty of Really
Teaching Computing Sciences”

o CS students shouldn’t use computers
o Rigorously prove correctness of their programs

o Correctness proofs
o Compilation (pre-execution) analysis

Correctness from the start

o Black box debugging
o Glass box debugging
o Don’t break what works

o Golden rule of debugging…

On debugging

o“Debug by subtraction, not by
addition”
¨Prof. Brian Harvey

Golden rule of debugging

