61ALECTURE 19 —
CALCULATOR

Steven Tang and Eric Tzeng
July 25, 2013

Turtle graphics

- STk has built in support for basic 2D graphics!
- Turtle sits on the canvas

- As the turtle “walks” around the canvas, it leaves a tralil
- Images are drawn by issuing commands to the turtle

Picture by Jonathan Zander

(define (triangle)
(forward 100)
Move forward (right 120)

100 steps (forward 100) N liaile/ais (40
(right 120) degrees

(forward 100)
(right 120))

- Did we need the last call to right? Why?

S
The Begin Special Form

Begin expressions allow sequencing

(begin <exp,> <exp,> ... <exp,>)

(define (repeat k £n)
(1f (> k 0)
(begin (fn) (repeat (- k 1) £n))
'done))

(define (tri £n)
(repeat 3 (lambda () (fn) (1t 120))))

(define (sier d k)
(tri (lambda () (if (= k 1) (fd d) (leg d k)))))

(define (leg d k)
(sier (/ 4 2) (- k 1)) (penup) (fd d) (pendown))

You are now Scheme masters!

- That wraps up our discussion of Scheme
- From here on out, the focus is is going to be on interpreters
- In other words, we’re writing programs that understand programs!

Programming Languages
Computers have software written in many different languages
Machine languages: statements can be interpreted by hardware

* All data are represented as a sequence of bits

* All statements are primitive instructions

High-level languages: hide concerns about those details

®* Primitive data types beyond just bits

* Statements/expressions, data can be non-primitive (e.g. calls)
® Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

Machine

Language C Python

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical languages (such
as programming languages)

f(x) =2 =2z +1

In computer science, languages can be implemented.:

®* Aninterpreter for a programming language is a function that, when
applied to an expression of the language, performs the actions
required to evaluate that expression

* The semantics and syntax of a language must be specified precisely in
order to build an interpreter

The Scheme-Syntax Calculator Language
A subset of Scheme that includes:

®* Number primitives
® Built-in arithmetic operators: +, -, *, /

* (Call expressions

> (+ (* 35) (- 10 6))

19
> (+ (* 3
(+ (* 2 4)
(+ 3 5)))
(+ (- 10 7)
6))

57

Syntax and Semantics of Calculator

Expression types:
* A call expression is a Scheme list
* A primitive expression is an operator symbol or number

Operators:
®* The + operator returns the sum of its arguments

®* The - operator returns either
e the additive inverse of a single argument, or
* the sum of subsequent arguments subtracted from the first

®* The * operator returns the product of its arguments

* The / operator returns the real-valued quotient of a dividend and
divisor (i.e. a numerator and denominator)

L
Today...

- We’re going write an interpreter for this language

- And we’re going to do it from (almost) scratch!
- We're going to reuse some Rlist functions that you’ve seen before

- You know how to do everything in this lecture already!
- We're just putting it together

Reading Scheme Lists

A Scheme list is written as elements in parentheses:

g
* *

R ——————————— | A recursive
: (kelement 0>)Kkelement 1> ... <element n») :)
a((L)(- _n) ={ Scheme I|stj

Each <element> can be a combination or primitive
(+ (*3 (+(*24) (+35))) (+(-107)6))

The task of parsing a language involves coercing a string
representation of an expression to the expression itself

Parsers must validate that expressions are well-formed

Parsing

A parser takes a sequence of lines and returns an expression.

, Lexical Syntactic :
lines : tokens] expression
analysis analysis
(', "+', 1 Pair('+', Pair(1, ...))
'("' 1 (' 23) (* 4 5-5))' } '(', '-', 23, ')' } printed as
(' '*', 4, 5.6, "), ")’ (+ 1 (- 23) (* 45.6))
/\ /\
4 N R
® |terative process ® Tree-recursive process
® Checks for malformed tokens ® Balances parentheses
® Determines types of tokens ® Returns tree structure

- J - J

Lexical analysis

- It's hard to directly determine the program structure from a string
"'(+ 1 (* 34) 2)"

] Tokenization!

- Split the string into a sequence of “tokens”

- From the token sequence, it's a lot easier to determine the
program structure

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression,
which may be nested.

Each call to read exp consumes the input tokens for exactly one
expression.

l(': l+': 1, I('J l": 23, l)': '(l: '*': 4, 5.6, ')l: l)l
A A A A VN A A

Base case: symbols and numbers

Recursive call: call read tail, which uses read exp for sub-
expressions and combines them as pairs

EXxpression Trees

A basic interpreter has two parts: a parser and an evaluator

tokenize and read_exp calc eval

lines Parser expression Evaluator value

"(+ 2 2)° Pair('+', Pair(2, Pair(2, nil)) 4
"(* (+1 (- 23)) 2)° Pair('*', Pair(Pair(+, ...)) -44
String forming a A number or a Pair with an A number

Scheme expression operator as its first element

Evaluation

Evaluation discovers the form of an expression and then executes a
corresponding evaluation rule

Primitive expressions are evaluated directly

Call expressions are evaluated recursively:

® Evaluate each operand expression

® Collect their values as a list of arguments

* Apply the named operator to the argument list

D
Applying Operators

Calculator has a fixed set of operators that we can enumerate

def calc_ apply(op, args):
"""Apply an operator to a list of args."""

1f operator == '+': .
++OP { Dispatch on operator name :I

return ...

if operator == '-':

Raising Application Errors

The - and / operators have restrictions on argument number

Raising exceptions in apply can identify such issues

def calc_apply(op, args):
"""Apply an operator to a list of args."""
if op == '-':
if len(args) ==
raise TypeError (‘'‘Not enough arguments’)

if op == '/"':
if len(args) ==
raise TypeError (‘'‘Not enough arguments’)

Read-Eval-Print Loop

The user interface to many programming languages is an interactive
loop, which

®* Reads an expression from the user,
® Parses the input to build an expression tree,
® Evaluates the expression tree,

® Prints the resulting value of the expression

The REPL handles errors by printing informative messages for the user,
rather than crashing

A well-designed REPL should not crash on any input!

