61ALECTURE 18 —
SCHEME

Steven Tang and Eric Tzeng
July 24, 2013

What's happening today?

- We're learning a new language!

- After you know one language (Python), learning your second
(Scheme) is much faster

- Learn by doing — have a sheet of paper ready
- Solutions in the code supplement for this lecture

Scheme Is a Dialect of Lisp

“The greatest single programming language ever designed.”
-Alan Kay, co-inventor of OOP

“The most powerful programming language is Lisp. If you don't know Lisp (or its variant,
Scheme), you don't appreciate what a powerful language is. Once you learn Lisp you will see

what is missing in most other languages.”
-Richard Stallman, founder of the Free Software movement

“Probably my favorite programming language.”

“EricTzeng; €56 ARstretor _Steven Tang, CS61A Instructor
LISP 15 OVER HALF A | | T WONDER IF THECYCLES THES[':. ARE YOUR
CENTURYOLD AND IT | | WILL CONTINUE FOREVER | | A\ FATHER'S PRRENTHESES
STILL HAS THIS PERFECT, - ;-,;:"\

——
-
-
—~
~
-~
-
-~
-—
-
-
-

TIMELESS AIRABOUT IT.
N

—
-
—
—
-
e
—~
-
—
o~

A FEW CODERS FROMEACH
NEW GENERATION RE-
DISCOVERING THE LISP ARTS,

http://imgs.xkcd.com/comics/lisp_cycles.png

FOR A MORE.... CIVIUZED AGE.

Scheme Fundamentals

Scheme programs consist of expressions, which can be:
®* Primitive expressions: 2 3.3 true + quotient
®* Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and 0 or more operands

> (quotient 10 2) “quotient” names Scheme’s built-in)
5 integer division procedure (i.e.,
> (quotient (+ 8 7) 5) function) y
i 3 Combinations can span multiple A
d:T(* 2 4) lines
(+ 3 5))) (spacing doesn’t matter) p

(1(- 10 7)
E}[5))
7

5

D
Special Forms

A combination that is not a call expression is a special form:

* If expression: (if <predicate> <consequent> <alternative>)
* Andandor: (and <ei> ... <en>) (or <ei> ... <en>)
®* Binding names: (define <name> <expression>)

®* New procedures: (define (<name> <formal parameters>) <body>)

N
i Eief}ng)pl 3.14) The name “pi” is bound to 3.14 in
pi
6.28 the global frame)
.)
> (deflne (abs x) A procedure is created and bound
(if (< x 0) to the name “abs”
(- x))
X))
> (abs -3)

e
Try it!

- Translate the following Python functions into Scheme:

def one():
return 1

def two(x, y, z):
return x + y * z

def three(n):
if n ==
return 0
return (n % 10) + 2 * three(n // 10)

In Scheme: In Scheme:

remainder quotient

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:

(define (plus4d4 x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

An operator can be a combination too:

--

--

Evaluates to the
add-x-&-y-&-z? procedure

Syntactic sugar: defining procedures

- In Python, 1ambda expressions are fundamentally different than
def statements:
- The body of a lambda must be a single expression
- The value of that expression is always returned

- In Scheme, defining procedures is actually syntactic sugar for a
define statement and a 1lambda expression

(define (square x) (define square
(* x x)) =) (lambda (x) (* X x)))

“Define the function "Define a function

and give it the

square” .
name square

Practice with lambdas

- Complete the definition of £ so that (((f) 3)) evaluates to 1.

(define (f) ???)

- Complete the definition of g so that ((g g) g) evaluates to 42.

(define g ???)

Pairs

We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (= m 0) x y)))
(define (first p) (p 0))
(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

®* cons: Two-argument procedure that creates a pair
®* car: Procedure that returns the first element of a pair
®* cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

> (cons 1 2)

(1. 2)
> (car (cons 1 2))
1

> (cdr (cons 1 2))
2

Pairs practice

- Suppose x is the following pair:

X ¢ o | 3
112 ° 26 |7
4 |5

- How would you select 1 from x?

- 37

- 77

- How would you define x in the first place?

Recursive Lists

A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:
® nil isthe empty list

* A non-empty Scheme list is a pair in which the second element
isnil or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> X

(12 3 4)
> (cdr x)
(2 3 4)

21(§Ogs.l4gcons 2 (cons 3:4))) ﬁ Not a well-formed list! j

Aside: Booleans and Boolean contexts

Boolean constants

- In Python, we had True and False as our Boolean constants
- In Scheme, we use #t and #f instead
Boolean contexts

- In Python, most objects were treated like True, but many different
objects were treated as False (0, “”, [], etc.)

- In Scheme, everything is treated like #t, with the exception of #f

itself.
(define (length 1st) (define (length 1st)
(if (not 1lst) (if (null? 1st)

WoONe Ll LS (+ 1 (length (cdr 15t)))))

Recursive list practice

- Write a Scheme function append that takes two lists and returns a
single list that contains the values from the first list and the
second list, in order:

STk> (append (list 1 2 3) (list 4 5 6))
(123456)

Symbolic Programming

Symbols are normally evaluated to produce values; how do we
refer to symbols?

> (define a 1)

> (define b 2) No sign of “a” and “b” in the
> (list a b) resulting value
(1 2)

NG

Quotation prevents something from being evaluated by Lisp

> (list 'a 'b) [
(a b) —= Symbols are now values
> (list 'a b) L

(a 2)
Quotation can also be applied to combinations to form lists

> (car '"(a b <))
a

> (cdr '"(a b <))
(b ¢)

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element
of the final pair

> (cdr (cdr "(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists

> '(12 . 3) 1| —|2]3
(12 . 3)

> '"(12 . (3 4)) 1| H—|2[|3 [—{4] ~—inil
(123 4)

> (123 . nil) 1[F—[2]F—[3]F—nil
(1 2 3)

What is the printed result of evaluating this expression?

> (cdr "((12) . (34 . (5))))
(3 4 5)

D
The Let Special Form

Let expressions introduce a new frame, with the given bindings

(let ((<name> <exp>) ...) <body>)

--
''''''''''

* * .
--

(define (filter £fn s)
(1f (null? s)
s
(let ((first (car s))
(rest (filter fn (cdr s))))
(1f (£fn first)
(cons first rest)
rest))))

> (filter even? '(1 2 3456 7))
(2 4 6)

Quick Sort

Quick sort algorithm: 9l3/1 65 v

1. Choose a pivot (e.g. first element)

2. Partition into three pieces: 3/1/6/ 5879
< pivot, = pivot, > pivot

3. Recurse on first and last piece 1]13]1]6 5/ 8

(define (filter-comp comp pivot s) > 6 8 |7

(filter (lambda (x) (comp x pivot)) s))

(define (quick-sort s)
(1f (<= (length s) 1)
S
(let ((pivot (car s)))
(append (quick-sort (filter-comp < pivot s))
(filter-comp = pivot s)
(quick-sort (filter-comp > pivot s))))))

Turtle graphics

- STk has built in support for basic 2D graphics!
- Turtle sits on the canvas

- As the turtle “walks” around the canvas, it leaves a tralil
- Images are drawn by issuing commands to the turtle

Picture by Jonathan Zander

(define (triangle)
(forward 100)
Move forward (right 120)

100 steps (forward 100) N liaile/ais (40
(right 120) degrees

(forward 100)
(right 120))

- Did we need the last call to right? Why?

S
The Begin Special Form

Begin expressions allow sequencing

(begin <exp,> <exp,> ... <exp,>)

(define (repeat k £n)
(1f (> k 0)
(begin (fn) (repeat (- k 1) £n))
'done))

(define (tri £n)
(repeat 3 (lambda () (fn) (1t 120))))

(define (sier d k)
(tri (lambda () (if (= k 1) (fd d) (leg d k)))))

(define (leg d k)
(sier (/ 4 2) (- k 1)) (penup) (fd d) (pendown))

