
61A LECTURE 17 –

ORDERS OF GROWTH,

EXCEPTIONS
Steven Tang and Eric Tzeng

July 23, 2013

Announcements

• Regrades for project 1 composition scores, due by next Monday

• See Piazza post for more details

• Midterm 2 is next Thursday, August 1, at 7pm.

• If you have a conflict at that time, fill out the conflict form on Piazza ASAP

• Potluck on Friday in the Woz at 6PM. See you there!

Order of Growth
A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

for sufficiently large values of n.

A graphical explanation

“sufficiently large

value of n”

means that there are
positive constants k1 and

k2 such that

for sufficiently large
values of n.

Warm up!

def sunshine(n):

if n == 0:

return 0

happiness = 1

while happiness < 10000000:

happiness += 1

return happiness + sunshine(n – 1)

def eternity(n):

i = 0

while i < n:

factorial(n)

i += 1

Time

A constant amount

of work – doesn’t

contribute to the

order of growth!

def factorial(n):

if n == 0:

return 1

return n * factorial(n – 1)

Comparing Orders of Growth (n is problem size)

Exponential growth! Recursive fib takes

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

steps, where

Implementing Sets
What we should be able to do with a set:

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2

• Intersection: Return a set with any elements in set1 and set2

• Adjunction: Return a set with all elements in s and a value v

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Adjunction

1

3
4

2

1

3
4

2

Implementation considerations

• Many ways to accomplish this

• Not all solutions are made equal!

• Some implementations might be better than other

implementations when performing certain operations

Sets as Unordered Sequences
Proposal 1: A set is represented by a recursive list that contains
no duplicate items

def empty(s):

return s is Rlist.empty

def set_contains(s, v):

if empty(s):

return False

elif s.first == v:

return True

return set_contains(s.rest, v)

The size of
the set

Sets as Unordered Sequences

def adjoin_set(s, v):

if set_contains(s, v):

return s

return Rlist(v, s)

def intersect_set(set1, set2):

f = lambda v: set_contains(set2, v)

return filter_rlist(set1, f)

def union_set(set1, set2):

f = lambda v: not set_contains(set2, v)

set1_not_set2 = filter_rlist(set1, f)

return extend_rlist(set1_not_set2, set2)

Time order of growth

The size of
the set

Assume sets are
the same size

Sets as Ordered Sequences
Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set_contains2(s, v):

if empty(s) or s.first > v:

return False

elif s.first == v:

return True

return set_contains2(s.rest, v)

Order of growth?

Compare

def set_contains2(s, v):

if empty(s) or s.first > v:

return False

elif s.first == v:

return True

return set_contains(s.rest, v)

def set_contains(s, v):

if empty(s):

return False

elif s.first == v:

return True

return set_contains(s.rest, v)

set_contains2 is slightly more optimized than set_contains, but they
are still both linear time operations.

Both functions have an
order of growth

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

def intersect_set2(set1, set2):

if empty(set1) or empty(set2):

return Rlist.empty

e1, e2 = set1.first, set2.first

if e1 == e2:

rest = intersect_set2(set1.rest, set2.rest)

return Rlist(e1, rest)

elif e1 < e2:

return intersect_set2(set1.rest, set2)

elif e2 < e1:

return intersect_set2(set1, set2.rest)

Order of growth?

Compare to the first version of
intersect_set.

Trees with Internal Node Values
Trees can have values at internal nodes as well as their leaves.

class Tree(object):

def __init__(self, entry, left=None, right=None):

self.entry = entry

self.left = left

self.right = right

Tree Sets
Proposal 3: A set is represented as a Tree. Each entry is:

• Larger than all entries in its left branch and

• Smaller than all entries in its right branch

7

3

1 5

9

11

7

3

1

5 9

11

5

3

1 7

9

11

Membership in Tree Sets
Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

5

3

1 7

9

11

def set_contains3(s, v):

if s is None:

return False

elif s.entry == v:

return True

elif s.entry < v:

return set_contains3(s.right, v)

elif s.entry > v:

return set_contains3(s.left, v)

9

If 9 is in the set, it
is in this branch

Order of growth?

Adjoining to a Tree Set

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8
7

9

11

8

5

3

1 7

9

11

8

What Did I Leave Out?
Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

Sets as binary trees:

• Intersection of two sets

• Union of two sets

That's homework 9!

Break

Handling Errors
Sometimes, computers don't do exactly what we expect

• A function receives unexpected argument types

• Some resource (such as a file) is not available

• A network connection is lost

September 9 1947: Moth found in a Mark II Computer

Methods
Methods are defined in the suite of a class statement

class Account(object):

def __init__(self, account_holder):

self.balance = 0

self.holder = account_holder

def deposit(self, amount):

self.balance = self.balance + amount

return self.balance

def withdraw(self, amount):

if amount > self.balance:

return 'Insufficient funds'

self.balance = self.balance - amount

return self.balance

These def statements create function objects as always,
but their names are bound as attributes of the class.

Exceptions
A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

Exceptions are objects! They have classes with constructors

They enable non-local continuations of control:

If f calls g and g calls h, exceptions can shift control from h to f
without waiting for g to return

However, exception handling tends to be slow

Mastering exceptions:

Assert Statements
Assert statements raise an exception of type AssertionError

assert <expression>, <string>

Assertions are designed to be used liberally and then disabled in
production systems

python3 -O

"O" stands for optimized. Among other things, it disables
assertions

Whether assertions are enabled is governed by the built-in bool
__debug__

Raise Statements
Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are just
instances of classes that inherit from BaseException

TypeError -- A function was passed the wrong number/type of
argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation

Try Statements
Try statements handle exceptions

Execution rule:

• The <try suite> is executed first;

• If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

• If the class of the exception inherits from <exception class>, then

• The <except suite> is executed, with <name> bound to the
exception

try:

<try suite>

except <exception class> as <name>:

<except suite>

...

Handling Exceptions
Exception handling can prevent a program from terminating

>>> try:
x = 1/0

except ZeroDivisionError as e:
print('handling a', type(e))
x = 0

handling a <class 'ZeroDivisionError'>
>>> x
0

Multiple try statements: Control jumps to the except suite of the
most recent try statement that handles that type of exception.

WWPD: What Would Python Do?
How will the Python interpreter respond?

>>> invert_safe(1/0)
>>> try:

invert_safe(0)
except BaseException:

print('Handled!')

>>> inverrrrt_safe(1/0)

def invert(x):

result = 1/x # Raises a ZeroDivisionError if x is 0

print('Never printed if x is 0')

return result

def invert_safe(x):

try:

return invert(x)

except ZeroDivisionError as e:

return str(e)

Quick Break!

• We will start talking about Scheme today – Eric will dive more

deeply into Scheme tomorrow!

Scheme Is a Dialect of Lisp

http://imgs.xkcd.com/comics/lisp_cycles.png

“The greatest single programming language ever designed.”
-Alan Kay, co-inventor of OOP

“The most powerful programming language is Lisp. If you don't know Lisp (or its variant,
Scheme), you don't appreciate what a powerful language is. Once you learn Lisp you will see
what is missing in most other languages.”
-Richard Stallman, founder of the Free Software movement

“Probably my favorite programming language.”
-Eric Tzeng, CS61A Instructor

http://imgs.xkcd.com/comics/lisp_cycles.png

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3

(+ (* 2 4)
(+ 3 5)))

(+ (- 10 7)
6))

57

Scheme Fundamentals
Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...

• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values

Call expressions have an operator and 0 or more operands

“quotient” names Scheme’s built-in
integer division procedure (i.e.,

function)

Combinations can span multiple
lines

(spacing doesn’t matter)

Special Forms
A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding names: (define <name> <expression>)

• New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14)
> (* pi 2)
6.28

> (define (abs x)
(if (< x 0)

(- x)
x))

> (abs -3)
3

The name “pi” is bound to 3.14 in
the global frame

A procedure is created and bound
to the name “abs”

Lambda Expressions
Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

An operator can be a combination too:

((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the
add-x-&-y-&-z2 procedure

λ

Pairs
We can implement pairs functionally:

(define (pair x y) (lambda (m) (if (= m 0) x y)))

(define (first p) (p 0))

(define (second p) (p 1))

Scheme also has built-in pairs that use weird names:

• cons: Two-argument procedure that creates a pair

• car: Procedure that returns the first element of a pair

• cdr: Procedure that returns the second element of a pair

A pair is represented by a dot between the elements, all in parens

> (cons 1 2)
(1 . 2)
> (car (cons 1 2))
1
> (cdr (cons 1 2))
2

Recursive Lists
A recursive list can be represented as a pair in which the second
element is a recursive list or the empty list

Scheme lists are recursive lists:

• nil is the empty list

• A non-empty Scheme list is a pair in which the second element
is nil or a Scheme list

Scheme lists are written as space-separated combinations

> (define x (cons 1 (cons 2 (cons 3 (cons 4 nil)))))
> x
(1 2 3 4)
> (cdr x)
(2 3 4)
> (cons 1 (cons 2 (cons 3 4)))
(1 2 3 . 4)

Not a well-formed list!

