61ALECTURE 16 —
TREES,
ORDERS OF GROWTH

Steven Tang and Eric Tzeng
July 22, 2013

7/22/13

Announcements

- Project 3 pushed back one day to August 2
- Regrades for project 1 composition scores, due by next Monday

- Potluck Friday, July 26 6-8pm, in the Woz Lounge (same place as
last time)

Data Structure Applications

The data structures we cover in 61A are used everywhere in CS
More about data structures in 61B

Example: recursive lists (also called linked lists)
* Operating systems

* Interpreters and compilers

* Anything that uses a queue

The Scheme programming language, which we will learn soon,
uses recursive lists as its primary data structure

Example: Environments

func add(...)

func outer(x) [parent=f1]
func inner(y) [parent=f2]

outer
Return

def curry(fn):
def outer(x):
def inner(y):

1
2
x |3 3
-4 return fn(x, y)
5
6
7

inner

Return return inner

return outer

& from operator import add
9 curry(add) (3) (4)

Example: http://g00.gI/8DNY1

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

In every tree, a vast forest

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count_leaves (tree):
if type(tree) != tuple:
return 1
return sum(map (count_ leaves, tree))

def map_tree(tree, fn):
if type(tree) !'= tuple:
return fn(tree)
return tuple (map_tree (branch, £n)
for branch in tree)

e
Trees with Internal Node Values

Trees can have values at internal nodes as well as their leaves.

class Tree (object):
def _ init (self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib tree(n):
if n ==
return Tree(0)
if n ==
return Tree (1)
left = fib_tree(n - 2)
right = fib_tree(n - 1)
return Tree(left.entry + right.entry, left, right)

7/22/13

e
Trees with Internal Node Values

Trees can have values at internal nodes as well as their leaves.

\

£ib(5)

/

fib(3) fib(4)
/ AN
fib(1) fib(2)
| . - \ fib(2) £ib(3)
1 fib(@) fib(1) v N s N

‘ fib(@) fib(1) fib(1) fib(2)
° 1 ‘ y
° 1

1 fib(e) fib(1)

!
o 1

Sets

A built-in Python container type

® Set literals are enclosed in braces

* Duplicate elements are removed on construction
* Sets are unordered, just like dictionary entries

>»>s ={3, 2, 1, 4, 4}
>>> s

{1, 2, 3, 4}

>>> 3 in s

True

>>> len(s)

4

>>> s.union({1, 5})

{1, 2, 3, 4, 5}

>>> s.intersection({6, 5, 4, 3})
{3, 4}

I —
Implementing Sets

What we should be able to do with a set:

* Membership testing: Is a value an element of a set?

® Union: Return a set with all elements in set1 or set2

* Intersection: Return a set with any elements in set1 and set2
* Adjunction: Return a set with all elements in s and a value v

Union Intersection Adjunction
1 2 1 2 1
3 3 3 3 3 2
4 5 4 5 4
N N =
12 12
45 3 s 3

Implementation considerations

- Many ways to accomplish this

- Not all solutions are made equal!

- Need a formal way to discuss how efficient implementations are

- Enter: orders of growth!

- Side note: we don’t care about how efficient your implementations
are in this course...

- ...but you do need to know how to identify the characteristics of a
program’s performance

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.
def count_factors(n): Time (remainders)
factors = 0
for k in range(l, n + 1):

if n % k == 0: n

factors += 1

return factors

sqrt_n = sqrt(n)
k, factors =1, 0
while k < sqgrt_n:
if n % k == 0:
factors += 2 Lﬁ]
k +=1
if k * k == n:
factors += 1
return factors

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)
R(n) = O(f(n))
means that there are positive constants k: and k2 such that

ky- f(n) < R(n) < k2 - f(n)

for sufficiently large values of n.

7/22/13

A graphical explanation
R(n) = ©(f(n))

means that there are
positive constants k1 and
k2 such that

ki- f(n) < R(n) < ka2« f(n)

k2 f(n)

/ R(n)
n/

for sufficiently large
values of n.

n

“sufficiently large
value of n”

I —
Some useful properties...

- Constant factors make no difference (why is this?)
©(100000n) = O(n) = ©(0.000001n)
- When summing terms, only the highest order term matters
@(n2 +n+1)= 9(77,2)

- We often say the n? term dominates the other two

Constant Time: ©(1)

Time does not depend on input size.

def g(n):
return 42

def foo(n):
baz = 7
if n > 5:
baz += 5
return baz

def is_even(n):
return n % 2 == 0

Iteration vs. Tree Recursion (Time)

Iterative and recursive implementations are not the same.
Time

def fib_iter(n): (—)(n)
prev, curr = 1, 0
for _ in range(n - 1):
prev, curr = curr, prev + curr
return curr

def £ib(n): O(o")
if n == 1:
return 0
if n ==
return 1
return fib(n - 2) + fib(n - 1)

You guys have seen how to make the recursive one faster (memoization)

The Consumption of Time
Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time
factors = 0 ()(71)
for k in range(l, n + 1):
ifn % k == 0:

factors += 1
return factors

sqrt_n = sqgrt(n)
k, factors =1, 0
while k < sqgrt_n:
if n % k == 0:
factors += 2
k +=1
if k * k == n:
factors += 1
return factors

Exponentiation
Goal: one more multiplication lets us double the problem size.
def exp(b, n): H —
PSS b 1 ifn=20
return 1 b-b""' otherwise

return b * exp(b, n - 1)

def square(x): 1 lf n= 0
return x * x 1
b" = ¢ (b2")? if n is even
def fast exp(b, n):
if n = 0: b-b"t if nis odd
return 1
elif n % 2 ==
return square(fast_exp(b, n // 2))
else:

return b * fast exp(b, n - 1)

7/22/13

Exponentiation
Goal: one more multiplication lets us double the problem size.
Time Space
def exp(b, H
L o) O
return 1

return b * exp(b, n - 1)

def square(x):
*
return x ¥ x O(logn) ©O(logn)
def fast exp(b, n):
if n ==
return 1
elif n % 2 ==
return square(fast _exp(b, n // 2))
else:
return b * fast exp(b, n - 1)

The Consumption of Space
Which environment frames do we need to keep during
evaluation?

Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:
* Environments for any statements currently being executed

* Parent environments of functions named in active
environments

The Consumption of Space
Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time Space
factors = 0 @(n) @(1)
for k in range(l, n + 1):
if n % k ==

factors += 1
return factors

sqrt_n = sgrt(n)
k, factors =1, 0 9(\/77) @(1)
while k < sqrt_n:

if n % k == 0:

factors += 2

k +=1
if k * k == n:

factors += 1
return factors

Fibonacci Memory Consumption

£ib(5)
£ib(3) fib(4)
/ N
£ib(1) £ib(2)
| / N . .
L fibey fib() /ﬁb(z) /ﬁb(3)
‘ £ib(0) fib(1) fib(2)
[} 1 ‘ ‘
o 1 fib(@) fib(1)

Assume we have 0 1
reached this step

Fibonacci Memory Consumption
Has an active environment
Can be reclaimed
fib(5) Hasn't yet been created

T

£ib(3) fib(4)

£ib(1) £ib(2)
/

1 fib(e) fib(1)

\
1

£ib(3)

fib(1) fib(2)
e /

1 fib(e) fib(1)

Assume we have 0 1
reached this step

Iteration vs. Tree Recursion

Iterative and recursive implementations are not the same.
Time Space

def £ib iter(n): @(n) @(1)
prev, curr = 1, 0
for _ in range(n - 1):
prev, curr = curr, prev + curr
return curr

def fib(n):
if n == 1:
return 0
if n == 2:
return 1
return fib(n - 2) + fib(n - 1)

0(¢") ©O(n)

You guys have seen how to make the recursive one faster (memoization)

7/22/13

Comparing Orders of Growth (nis problem size)
O(b") / Exponential growth! Recursive fib takes

V3 ~ 1.61828

1

O(¢") steps, where ¢ =
10)eeerenerees >
O(n") Incrementing the problem scales R(n) by a factor.

(')(”2) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

©(n) | Linear growth. Resources scale with the problem.
CIVD >

O(logn) Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

O(1) " constant. The problem size doesn't matter.

Break!

- After the break, we’'ll take what we just learned and use it to
compare three different implementations of sets

e
Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains
no duplicate items

def empty(s):
return s is Rlist.empty

def set contains(s, v):
if empty(s):
return False
elif s.first == v:
return True
return set contains(s.rest, v)

[
Sets as Unordered Sequences

def adjoin_set(s, v): Time order of growth
if set_contains(s, v): (‘)(71)
return s
return Rlist(v, s)

def intersect_set(setl, set2):
f = lambda v: set_contains(set2, v) @(712)
return filter_ rlist(setl, f)

def union_set(setl, set2):
f = lambda v: not set_contains(set2, v) (—)(112)
setl_not_set2 = filter rlist(setl, f)
return extend rlist(setl_not_set2, set2)

[
Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set contains2(s, v):
if empty(s) or s.first > v:
return False
elif s.first == v:
return True
return set_contains(s.rest, v)

Order of growth? ©(n)

I
Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

def intersect set2(setl, set2):
if empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2.first
if el == e2:
rest = intersect_set2(setl.rest, set2.rest)
return Rlist(el, rest)
elif el < e2:
return intersect set2(setl.rest, set2)
elif e2 < el:
return intersect_set2(setl, set2.rest)

Order of growth? ©(n)

7/22/13

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:
® lLarger than all entries in its left branch and

* Smaller than all entries in its right branch

3/’\9 /\ 3/5\9
1 / \5 }1 1 5/7 \9 1 / 7/ \11
\

11

Membership in Tree Sets

Set membership tests traverse the tree
* The element is either in the left or right sub-branch
* By focusing on one branch, we reduce the set by about half

def set_contains3(s, v):
if s is None:
return False
elif s.entry == v:
return True
elif s.entry < v:
return set_contains3(s.right, v)
elif s.entry > v:
return set_contains3(s.left, v)

If 9 is in the set, it
is in this branch

Order of growth?

Adjoining to a Tree Set

5 9 None
NN
/ / \ 7 11 None None
1 7 11
Right! Left! Right! Stop!

N/
1/ 7/ \11 7\ N

8

e
What Did | Leave Out?

Sets as ordered sequences:
* Adjoining an element to a set
* Union of two sets

Sets as binary trees:
* Intersection of two sets
* Union of two sets

That's homework!

