61A LECTURE 15 —
MEMOIZATION,
RECURSIVE DATA, SETS

Steven Tang and Eric Tzeng
July 18, 2013

Now In a wider screen format!

L
Who am I? What am | doing here?

- First two weeks of class (Chapter 1):
- FUNCTIONS
- Computational processes, role of functions

- Past 2 weeks of class (Chapter 2):
- DATA
- Real-world phenomena are complex — Mining Twitter datal!

- Today and the next 2 weeks (Chapter 3):
- PROGRAMS and their INTERPRETATION

Next 2 weeks

A Python program is just a collection of text
This text only has meaning through interpretation

Programming languages like Python are useful because we can

define an interpreter, a program that carries out Python’s evaluation
and execution procedures

An interpreter, which determines the S
meaning of expressions, is really just i T
another program.

We are not only users of languages
designed by others,
we are designers of languages.

Interpreters...

- Writing our own interpreters will be exciting! We will cover this
next week.

- First, though, we need to learn a few background tools and
techniques

- Today’s lecture focuses on several ideas that will help us later
create our interpreters

Announcements

- Do homework!

- Potluck next Friday, July 26 6-8pm, in the Woz Lounge (same
place as last time)
- Don’t make any other plans for Friday!
- Bring some food, enjoy other people’s food!

- Come mingle with fellow students and the teaching staff! No project or
midterm due that week!

L
Speeding up computation

def fib iter(n):

if n ==

return 0
fib n, fib n 1 =1, 0
k=1

while k < n:
fib n, fib n 1 = fib n 1 + fib n, fib n
k += 1

return fib n

def fib(n):
1f n ==
return 0
elif n ==
return 1
return fib(n - 1) + fib(n - 2)

Speeding up computation

- fib_iter seems to be much faster when the input is large!
- Why?
- The recursive function calls fib many times (about 2 fib recursive calls are
generated for each call to fib). When you have a LOT of function calls, then

computation will take much longer (think: a new frame has to be created for
each call)

- How can we speed up the recursive version?

L
Memoization

Tree recursive functions often compute the same thing many
times

Idea: Remember the results that have been computed before

def memo (£) : Keys are arguments that
.......................... { } map to return values
def memoized(n):
if n not in cache:
cache[n] = f(n)
return cache[n]

returnimemoized: Same behavior as £,]

* *

if £is a pure function

Memoized Tree Recursion
@ Callto £ib

’0
*
*
’0
0

0
‘0

fFib(2) Fib(3) " / \‘

........ i £i b(/l) fl\b (2) Q /-Flb (3) Q . /'Flb (4) \
| | flb(l) flb(z) flb(Z) fib(3)"‘x.,.
B 2 I B N
L0 1 5% 1 fib(1) fib(2):
£ib (35) ’ erranen, | |
Calls to £ib with memoization: 35 R 1

Calls to £ib without memoization: 18,454,929

When does memo speed computation up?

- memo_factorial(5) — not sped up the first time we call it
- What if we called memo_factorial(5) again?

- Memoization speeds computation up when the function is called
more than once, perhaps through recursion; otherwise, no effect
other than minor assignments to the memo dictionary

- The memoized version of fib computes more efficiently

- We will discuss a more precise definition for “computes more
efficiency” tomorrow

L
Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

— 1 — 2 ——| 3 ° > 4 | None

Recursive lists are recursive: the rest of the list is a list.

Nested pairs (old): (1, (2, (3, (4, None))))

Rlist class (new): Rlist(1, Rlist(2, Rlist(3, Rlist(4))))

S
Recursive List Class

Methods can be recursive as well!

class Rlist(object):
class EmptylList (object):

--
-

idef _ len (self):: There's the
: return 0 :

" | base case!

*
--

empty = EmptyList()

def init (self, first, rest=empty):

self.first = first
self.rest = rest

--
*

idef _ len (self): E Yes. thi i
: return 1 + len(self.rest): €5, ISFa IS
recursive

lll

def getitem (self, 1i):
if i ==
return self.first
return self.rest[i - 1]

L
Recursive Operations on RIists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, R1list(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, R1list(3)))))

def extend rlist(sl, s2):
if sl is Rlist.empty:
return s2
return Rlist(sl.first, extend rlist(sl.rest, s2))

L
Map and Filter on RIlists

We want operations on a whole list, not an element at a time.

def map rlist(s, fn):
if s is Rlist.empty:
return s
return Rlist(fn(s.first), map rlist(s.rest, £fn))

def filter rlist(s, £fn):
if s is Rlist.empty:
return s
rest = filter rlist(s.rest, £fn)
if fn(s.first):
return Rlist(s.first, rest)
return rest

" WEDNESDAY'S HIGHS

20 40 0 0 10 20 30740 50 60 70 80 90 100 110 -
—— = - - = / . 4
78 I7
Wy 85 83 = 1y
/84 90 , 88 ‘sal WJlToiNe 76
' 89 91 90 87 71/ 72 “?7 N 80)";
& GO 92 27 18 33” 82
99] 96¥ 24 o5 93 g3 89 837 g3 84
70 88 20 85 gs 83"

88
69184 95 93 85 t
:&V,B:’ . 92 89 890Ny
g5 1109 78 92 =
TANEI05 4J

) — 98\
& 96

Weather
Channel

. weather.com
17 Jul 2013 20:50 GMT /17 Jul 2013 04:50 PM EDT -~

S
Sets

A built-in Python container type
® Set literals are enclosed in braces
®* Duplicate elements are removed on construction

® Sets are unordered, just like dictionary entries

>>> s =43, 2, 1, 4, 4}

>>> S

{1, 2, 3, 4}
>>> 3 in s
True

>>> len(s)

4

>>> s.union({1, 5})

{1, 2, 3, 4, 5}

>>> s.intersection({6, 5, 4, 3})
{3, 4}

Implementing Sets

What we should be able to do with a set:

* Membership testing: Is a value an element of a set?

®* Union: Return a set with all elements in set1 or set2

* Intersection: Return a set with any elements in set1 and set2
®* Adjunction: Return a set with all elementsin s and a value v

Union Intersection Adjunction
1 2 1 2 1
3 3 3 3 3 °
4 5 4 5 4
1 2 12
3 3 3

L
Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains
no duplicate items

def empty(s):
return s is Rlist.empty

def set contains(s, v):
if empty(s):
return False
elif s.first == v:
return True
return set contains(s.rest, v)

L
Sets as Unordered Sequences

def adjoin set(s, v): We will talk about
if set contains(s, v): how “efficient”

return s)
return Rlist(v, s) these operations
are next class!

def intersect set(setl, set2):
f = lambda v: set contains(set2, v)
return filter rlist(setl, f)

def union set(setl, set2):
f = lambda v: not set contains(set2, v)
setl not set2 = filter rlist(setl, f)
return extend rlist(setl not set2, set2)

Sets as Ordered Seqguences

Proposal 2: A set is represented by a recursive list with unique
elements ordered from least to greatest

def set contains2(s, v):
if empty(s) or s.first > v:
return False
elif s.first == v:
return True
return set contains(s.rest, v)

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

def intersect set2(setl, set2):
if empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2.first
if el == e2:
rest = intersect set2(setl.rest, set2.rest)
return Rlist(el, rest)
elif el < e2:
return intersect set2(setl.rest, set2)
elif e2 < el:
return intersect set2(setl, set2.rest)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

In every tree, a vast forest

Recursive Tree Processing

Tree operations typically make recursive calls on branches

def count leaves(tree):
if type(tree) !'= tuple:
return 1
return sum(map (count leaves, tree))

def map tree(tree, £fn):
if type(tree) !'= tuple:
return fn(tree)
return tuple (map tree(branch, £fn)
for branch in tree)

S
Trees with Internal Node Values

Trees can have values at internal nodes as well as their leaves.

class Tree (object):
def init (self, entry, left=None, right=None):
self.entry = entry
self.left = left

self.right = right

def fib tree(n):
if n ==
return Tree (0)
if n ==
return Tree(l)
left = fib tree(n - 2)
right = fib tree(n - 1)
return Tree (left.entry + right.entry, left, right)

S
Trees with Internal Node Values

Trees can have values at internal nodes as well as their leaves.

fib(5)
fib(3) fib(4)
/ AN
fib(1) fib(2)

| . / f\ fib(2) fib(3)
1 fib(@) fib(1) s AN / AN

| | fib(@) fib(1) fib(1) fib(2)

° ! | | N

0 1 1 fib(e) fib(1)

(%) 1

