
61A LECTURE 15 –

MEMOIZATION,

RECURSIVE DATA, SETS
Steven Tang and Eric Tzeng

July 18, 2013

Now in a wider screen format!



Who am I? What am I doing here?

• First two weeks of class (Chapter 1):

• FUNCTIONS

• Computational processes, role of functions

• Past 2 weeks of class (Chapter 2):

• DATA

• Real-world phenomena are complex – Mining Twitter data!

• Today and the next 2 weeks (Chapter 3):

• PROGRAMS and their INTERPRETATION



Next 2 weeks

• A Python program is just a collection of text

• This text only has meaning through interpretation

• Programming languages like Python are useful because we can 

define an interpreter, a program that carries out Python’s evaluation 

and execution procedures

We are not only users of languages 

designed by others, 

we are designers of languages.

An interpreter, which determines the 

meaning of expressions, is really just 

another program.



Interpreters...

• Writing our own interpreters will be exciting! We will cover this 

next week.

• First, though, we need to learn a few background tools and 

techniques

• Today’s lecture focuses on several ideas that will help us later 

create our interpreters



Announcements

• Do homework!

• Potluck next Friday, July 26 6-8pm, in the Woz Lounge (same 

place as last time)

• Don’t make any other plans for Friday!

• Bring some food, enjoy other people’s food!

• Come mingle with fellow students and the teaching staff! No project or 

midterm due that week!



Speeding up computation

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

return fib(n - 1) + fib(n - 2)

def fib_iter(n):

if n == 0:

return 0

fib_n, fib_n_1 = 1, 0

k = 1

while k < n:

fib_n, fib_n_1 = fib_n_1 + fib_n, fib_n

k += 1

return fib_n



Speeding up computation

• fib_iter seems to be much faster when the input is large!

• Why?

• The recursive function calls fib many times (about 2 fib recursive calls are 

generated for each call to fib). When you have a LOT of function calls, then 

computation will take much longer (think: a new frame has to be created for 

each call)

• How can we speed up the recursive version?



Memoization
Tree recursive functions often compute the same thing many 
times

Idea: Remember the results that have been computed before

def memo(f):

cache = {}

def memoized(n):

if n not in cache:

cache[n] = f(n)

return cache[n]

return memoized

Keys are arguments that 
map to return values

Same behavior as f, 
if f is a pure function



Memoized Tree Recursion

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

35

18,454,929



When does memo speed computation up?

• memo_factorial(5) – not sped up the first time we call it

• What if we called memo_factorial(5) again?

• Memoization speeds computation up when the function is called 

more than once, perhaps through recursion; otherwise, no effect 

other than minor assignments to the memo dictionary

• The memoized version of fib computes more efficiently

• We will discuss a more precise definition for “computes more 

efficiency” tomorrow



Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2 3 4 None

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.

(1, (2, (3, (4, None))))

Rlist(1, Rlist(2, Rlist(3, Rlist(4))))

Nested pairs (old):

Rlist class (new):



Recursive List Class
Methods can be recursive as well!

class Rlist(object):

class EmptyList(object):

def __len__(self):

return 0

empty = EmptyList()

def __init__(self, first, rest=empty):

self.first = first

self.rest = rest

def __len__(self):

return 1 + len(self.rest)

def __getitem__(self, i):

if i == 0:

return self.first

return self.rest[i - 1]

Yes, this call is 
recursive

There's the 
base case!



Recursive Operations on Rlists
Recursive list processing almost always involves a recursive call 
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend_rlist(s1, s2):

if s1 is Rlist.empty:

return s2

return Rlist(s1.first, extend_rlist(s1.rest, s2))



Map and Filter on Rlists
We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):

if s is Rlist.empty:

return s

return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):

if s is Rlist.empty:

return s

rest = filter_rlist(s.rest, fn)

if fn(s.first):

return Rlist(s.first, rest)

return rest



Break!



Sets
A built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}



Implementing Sets
What we should be able to do with a set:

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2

• Intersection: Return a set with any elements in set1 and set2

• Adjunction: Return a set with all elements in s and a value v

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Adjunction

1

3
4

2

1

3
4

2



Sets as Unordered Sequences
Proposal 1: A set is represented by a recursive list that contains 
no duplicate items

def empty(s):

return s is Rlist.empty

def set_contains(s, v):

if empty(s):

return False

elif s.first == v:

return True

return set_contains(s.rest, v)



Sets as Unordered Sequences

def adjoin_set(s, v):

if set_contains(s, v):

return s

return Rlist(v, s)

def intersect_set(set1, set2):

f = lambda v: set_contains(set2, v)

return filter_rlist(set1, f)

def union_set(set1, set2):

f = lambda v: not set_contains(set2, v)

set1_not_set2 = filter_rlist(set1, f)

return extend_rlist(set1_not_set2, set2)

We will talk about 
how “efficient” 
these operations 
are next class!



Sets as Ordered Sequences
Proposal 2: A set is represented by a recursive list with unique 
elements ordered from least to greatest

def set_contains2(s, v):

if empty(s) or s.first > v:

return False

elif s.first == v:

return True

return set_contains(s.rest, v)



Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

def intersect_set2(set1, set2):

if empty(set1) or empty(set2):

return Rlist.empty

e1, e2 = set1.first, set2.first

if e1 == e2:

rest = intersect_set2(set1.rest, set2.rest)

return Rlist(e1, rest)

elif e1 < e2:

return intersect_set2(set1.rest, set2)

elif e2 < e1:

return intersect_set2(set1, set2.rest)



Tree Structured Data

((1, 2), (3, 4), 5)

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

1 2 3 4

5

In every tree, a vast forest

5

21 43



Recursive Tree Processing
Tree operations typically make recursive calls on branches

def count_leaves(tree):

if type(tree) != tuple:

return 1

return sum(map(count_leaves, tree))

def map_tree(tree, fn):

if type(tree) != tuple:

return fn(tree)

return tuple(map_tree(branch, fn)

for branch in tree)



Trees with Internal Node Values
Trees can have values at internal nodes as well as their leaves.

class Tree(object):

def __init__(self, entry, left=None, right=None):

self.entry = entry

self.left = left

self.right = right

def fib_tree(n):

if n == 0:

return Tree(0)

if n == 1:

return Tree(1)

left = fib_tree(n - 2)

right = fib_tree(n - 1)

return Tree(left.entry + right.entry, left, right)



Trees with Internal Node Values
Trees can have values at internal nodes as well as their leaves.

fib(5)

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1


