61A LECTURE 14 – MULTIPLE REPRESENTATIONS

Steven Tang and Eric Tzeng July 17, 2013

Generic Functions

An abstraction might have more than one representation.

Python has many sequence types: tuples, ranges, lists, etc.

An abstract data type might have multiple implementations.

Some representations are better suited to some problems

A function might want to operate on multiple data types.

Message passing enables us to accomplish all of the above, as we will see today and next time

String Representations

An object value should **behave** like the kind of data it is meant to represent;

For instance, by **producing a string** representation of itself.

Strings are important: they represent *language* and *programs*.

In Python, all objects produce two string representations:

- The "str" is legible to **humans**.
- The "repr" is legible to the **Python interpreter**.

"str" and "repr" strings are often the same! Think: numbers.

When the "str" and "repr" **strings are the same**, that's evidence that a programming language is legible by humans!

Message Passing Enables Polymorphism

Polymorphic function: A function that can be applied to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to anything.

repr invokes a zero-argument method **__repr_** on its argument.

```
>>> today.__repr__()
'datetime.date(2013, 7, 16)'
```

str invokes a zero-argument method ___**str**__ on its argument. (But **str** is a class, not a function!)

```
>>> today.__str__()
'2013-07-16'
```

Aside: duck typing

- "If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck."
- In Python terms: it doesn't matter what the official type of something is if it understands the correct messages
- The repr function knows nothing about the types of objects that it's getting...
- ...except that they can quack (they have a ___repr___
 method).

Inheritance and Polymorphism

Inheritance also enables polymorphism, since subclasses provide at least as much behavior as their base classes

Example of function that works on all accounts:

```
def welfare(account):
    """Deposit $100 into an account if it has less
    than $100."""
    if account.balance < 100:
        return account.deposit(100)

>>> alice_account = CheckingAccount(0)
>>> welfare(alice_account)
100
>>> bob_account = SavingsAccount(0)
>>> welfare(bob_account)
98
```

Interfaces

Message passing allows **different data types** to respond to the **same message**.

A shared message that elicits similar behavior from different object classes is a powerful method of abstraction.

An *interface* is a **set of shared messages**, along with a specification of **what they mean**.

Classes that implement __repr__ and __str__ methods that return Python- and human-readable strings thereby implement an interface for producing Python string representations.

Classes that implement __len__ and __getitem__ are sequences.

Special Methods

Python operators and generic functions make use of methods with names like "__name__"

These are special or magic methods

Examples:

Example: Rational Numbers

```
class Rational(object):
   def init (self, numer, denom):
       q = qcd(numer, denom)
        self.numerator = numer // q
        self.denominator = denom // q
   def repr (self):
        return 'Rational({0}, {1})'.format(self.numerator,
                                           self.denominator)
   def str (self):
        return '{0}/{1}'.format(self.numerator,
                               self.denominator)
   def add (self, num):
        denom = self.denominator * num.denominator
        numer1 = self.numerator * num.denominator
        numer2 = self.denominator * num.numerator
        return Rational(numer1 + numer2, denom)
   def eq (self, num):
        return (self.numerator == num.numerator and
                self.denominator == num.denominator)
```

Property Methods

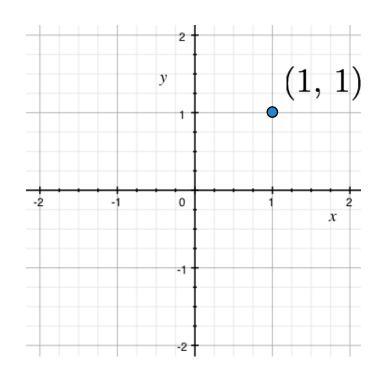
Often, we want the value of instance attributes to be linked.

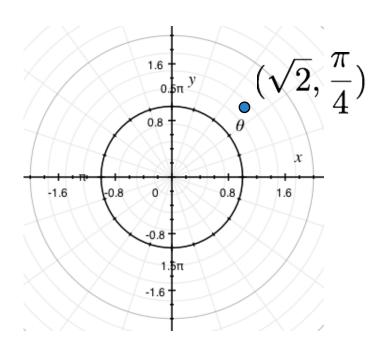
The **@property** decorator on a method designates that it will be called whenever it is *looked up* on an instance.

It allows zero-argument methods to be called without an explicit call expression.

Multiple Representations of Abstract Data

Rectangular and polar representations for complex numbers





Most operations don't care about the representation.

Some mathematical operations are easier on one than the other.

Arithmetic Abstraction Barriers

Complex numbers as whole data values

add_complex mul_complex

Complex numbers as two-dimensional vectors

real imag magnitude angle

Rectangular representation

Polar representation

An Interface for Complex Numbers

All complex numbers should have real and imag components.

All complex numbers should have a magnitude and angle.

Using this interface, we can implement complex arithmetic:

The Rectangular Representation

class ComplexRI(object): def init (self, real, imag): self.real = real self.imag = imag Property decorator: "Call this function on attribute look-up" @property def magnitude(self): return (self.real ** 2 + self.imag ** 2) ** 0.5 math.atan2 (y,x): Angle between @property x-axis and the point (x,y) def angle(self): return(atan2(self.imag, self.real) def repr (self): return 'ComplexRI({0}, {1})'.format(self.real,

self.imag)

The Polar Representation

```
class ComplexMA(object):
    def init (self, magnitude, angle):
        self.magnitude = magnitude
        self.angle = angle
    @property
    def real(self):
        return self.magnitude * cos(self.angle)
    @property
    def imag(self):
        return self.magnitude * sin(self.angle)
   def repr (self):
        return 'ComplexMA({0}, {1})'.format(self.magnitude,
                                            self.angle)
```

Using Complex Numbers

Either type of complex number can be passed as either argument to add_complex or mul_complex:

We can also define **add** and **mul** in both classes.

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

How do we add a complex number and a rational number together?

add_complex mul_complex — add_complex mul_complex —

Rational numbers as numerators & denominators

Complex numbers as two-dimensional vectors

There are many different techniques for doing this!

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
                                           Converted to a
    return type(z) is Rational
                                          real number (float)
def add complex and rational(z, r):
    return ComplexRI(z.real + r.numerator / r.denominat
                      z.imag)
def add by type dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational."""
    if iscomplex(z1) and iscomplex(z2):
        return add complex(z1, z2)
    elif iscomplex(z1) and isrational(z2):
        return add complex and rational(z1, z2)
    elif isrational(z1) and iscomplex(z2):
        return add complex and rational(z2, z1)
    else:
        add rational(z1, z2)
```

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type (like we did for message passing)

```
def type tag(x):
    return type tags[type(x)]
type tags = {ComplexRI: 'com',
                                  Declares that ComplexRI
                                 and ComplexMA should be
            ComplexMA: 'com'
             Rational: 'rat'}
                                     treated uniformly
def add(z1, z2):
    types = (type tag(z1), type tag(z2))
    return add implementations[types](z1, z2)
add implementations = {}
add implementations [('com', 'com')] = add complex
add implementations[('rat', 'rat')] = add rational
add implementations [('com', 'rat')] = add complex and rational
add implementations[('rat', 'com')] = add rational and complex
             lambda r, z: add complex and rational(z, r)
```

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add_implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support *m* types and *n* operations?

integer, rational, real, complex
$$m\cdot (m-1)\cdot n \qquad \text{add, subtract, multiply,} \\ 4\cdot (4-1)\cdot 4=48$$

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

Arg 1	Arg 2	Add	Multiply
Complex	Complex		
Rational	Rational		
Complex	Rational		
Rational	Complex		

Message Passing

Data-Directed Programming

There's nothing addition-specific about add

Idea: One dispatch function for (operator, types) pairs

```
def apply(operator name, x, y):
    tags = (type tag(x), type tag(y))
    key = (operator name, tags)
    return apply implementations[key](x, y)
apply implementations = {
    ('add', ('com', 'com')): add complex,
    ('add', ('rat', 'rat')): add rational,
    ('add', ('com', 'rat')): add complex and rational,
    ('add', ('rat', 'com')): add rational and complex,
    ('mul', ('com', 'com')): mul complex,
    ('mul', ('rat', 'rat')): mul rational,
    ('mul', ('com', 'rat')): mul complex and rational,
    ('mul', ('rat', 'com')): mul rational and complex
```

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

```
def rational_to_complex(x):
    return ComplexRI(x.numerator / x.denominator, 0)

coercions = {('rat', 'com'): rational_to_complex}
```

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed programming?

Applying Operators with Coercion

- 1. Attempt to coerce arguments into values of the same type
- 2. Apply type-specific (not cross-type) operations

```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
            tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
            ty, y = tx, coercions[(ty, tx)](y)
        else:
            return 'No coercion possible.'
    assert tx == ty
    key = (operator_name, tx)
    return coerce_implementations[key](x, y)
```

Coercion Analysis
Minimal violation of abstraction barriers: we define cross-type coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

Arg 1	Arg 2	Add	Multiply
Complex	Complex		
Rational	Rational		
Complex	Rational		
Rational	Complex		

From	То	Coerce
Complex	Rational	
Rational	Complex	

Туре	Add	Multiply
Complex		
Rational		