61ALECTURE 14 —
MULTIPLE
REPRESENTATIONS

Steven Tang and Eric Tzeng
July 17, 2013



Generic Functions

An abstraction might have more than one representation.

* Python has many sequence types: tuples, ranges, lists, etc.

An abstract data type might have multiple implementations.

®* Some representations are better suited to some problems
A function might want to operate on multiple data types.

Message passing enables us to accomplish all of the above, as
we will see today and next time



String Representations

An object value should behave like the kind of data it is meant
to represent;

For instance, by producing a string representation of itself.
Strings are important: they represent language and programs.

In Python, all objects produce two string representations:
®* The “str” is legible to humans.
®* The “repr” is legible to the Python interpreter.

“str” and “repr” strings are often the same! Think: numbers.

When the “str” and “repr” strings are the same, that’s evidence
that a programming language is legible by humans!



Message Passing Enables Polymorphism

Polymorphic function: A function that can be applied to many
(poly) different forms (morph) of data

str and repr are both polymorphic; they apply to anything.
repr invokes a zero-argument method _ repr  onits

argument.

>>> today. repr_ ()
‘datetime.date(2013, 7, 16)'

str invokes a zero-argument method _ str  onits
argument. (But str is a class, not a function!)

>>> today. str_ ()
'2013-07-16"



-
Aside: duck typing

- “If it looks like a duck, swims like a duck, and quacks like
a duck, then it probably is a duck.”

- In Python terms: it doesn’t matter what the official type of
something is if it understands the correct messages

- The repr function knows nothing about the types of
objects that it's getting...

- ...except that they can quack (they have a __ repr__
method).



-
Inheritance and Polymorphism

Inheritance also enables polymorphism, since subclasses
provide at least as much behavior as their base classes

Example of function that works on all accounts:

def welfare (account) :
"""Deposit $100 into an account if it has less
than $100."""
if account.balance < 100:
return account.deposit (100)

>>> alice_account = CheckingAccount(9)
>>> welfare(alice _account)

100

>>> bob_account = SavingsAccount(9)
>>> welfare(bob_account)

98



Interfaces

Message passing allows different data types to respond to the
same message.

A shared message that elicits similar behavior from different
object classes is a powerful method of abstraction.

An interface is a set of shared messages, along with a
specification of what they mean.

Classes that implement  repr and ___str  methods
that return Python- and human-readable strings thereby
implement an interface for producing Python string

representations.

Classes that implement _ len

and getitem are
sequences.



-
Special Methods

Python operators and generic functions make use of
methods with names like®© name °

These are special or magic methods

Examples:

len __len

+, += _add , iadd

[1, []1= __getitem , setitem

__getattr_ ,
setattr



e
Example: Rational Numbers

class Rational (object):
def init (self, numer, denom):
g = gcd(numer, denom)
self.numerator = numer // g
self.denominator = denom // g
def repr (self):
return 'Rational ({0}, {1})'.format(self.numerator,

self.denominator)
def str (self):

return '{0}/{1}'.format (self.numerator,
self.denominator)

def add (self, num):
denom = self.denominator * num.denominator
numerl = self.numerator * num.denominator
numer?2 = self.denominator * num.numerator
return Rational (numerl + numer2, denom)

def eq (self, num):
return (self.numerator == num.numerator and

self.denominator == num.denominator)




Property Methods

Often, we want the value of instance attributes to be linked.

>>>
>>>
0.6
>>>
>>>
0.8
>>>
>>>
2.0

f = Rational(3, 5)
f.float value
@property
f.numerator = 4
. def float wvalue(self):

f.float value —

- return (self.numerator //
£ denominator -= 3 self .denominator)
f.float value

The @property decorator on a method designates that it will
be called whenever it is looked up on an instance.

It allows zero-argument methods to be called without an explicit
call expression.



Multiple Representations of Abstract Data
Rectangular and polar representations for complex numbers

2--

y 1.1 XS m
1 ‘( ’ ) / obn? (\/57 _)

Most operations don't care about the representation.

Some mathematical operations are easier on one than the other.



Arithmetic Abstraction Barriers

Complex numbers as whole data values

add_complex mul complex

Complex numbers as two-dimensional vectors

real imag magnitude angle

Rectangular Polar
representation representation




An Interface for Complex Numbers

All complex numbers should have real and imag components.
All complex numbers should have a magnitude and angle.

Using this interface, we can implement complex arithmetic:

def add complex(zl, z2):
return ComplexRI(zl.real + z2.real,
zl.imag + z2.imagqg)

def mul complex(zl, z2):
return ComplexMA (z1l.magnitude * z2.magnitude,
zl.angle + z2.angle)



The Rectangular Representation

class ComplexRI (object) :

self.real = real
self.imag =

def init (self, real, imag):

llllllllllllllllllllllllllll
* LS

ima
fProperty decorator: "Call this function
on attribute look-up"

NG

------------------------

def magnitude (self) :
return (self.real ** 2 + self.imag ** 2) ** (0.5

RQproperty math.atan2 (y, x): Angle between)
o x-axis and the point (x,y)

llllllllllllllll

def repr (self):
return 'ComplexRI ({0}, {1})'.format(self.real,
self.imagqg)



The Polar Representation

class ComplexMA (object) :

def init (self, magnitude, angle):

self .magnitude = magnitude
self.angle = angle

@property
def real (self):
return self.magnitude * cos(self.angle)

@property
def imag(self):
return self.magnitude * sin(self.angle)

def repr (self):
return 'ComplexMA ({0}, {1})'.format (self.magnitude,
self.angle)



Using Complex Numbers

Either type of complex number can be passed as either
argument to add complex ormul complex:

def add complex(zl, z2):
return ComplexRI(zl.real + z2.real,
zl.imag + z2.imag)

def mul complex(zl, z2):
return ComplexMA (z1l.magnitude * z2.magnitude,
zl.angle + z2.angle)

>>> from math import pi
>>> add_complex(ComplexRI(1, 2), ComplexMA(2, pi/2))
ComplexRI(1.0000000000000002, 4.0)

>>> mul complex(ComplexRI(@©, 1), ComplexRI(©, 1))
ComplexMA(1.0, 3.141592653589793)

We can also define __add _and ___mul in both classes.



The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

How do we add a complex number
and a rational number together?

] 1 1 1
add_rational mul rational — add_complex mul_complex

Complex numbers as

Rational numbers as ) :
two-dimensional vectors

numerators & denominators

There are many different techniques for doing this!



e
[')I;/pe Dispatching

ne a different function for each possible combination of
types for which an operation (e.g., addition) is valid

def iscomplex(z):
return type(z) in (ComplexRI, ComplexMA)
return type(z) is R?tlonal real number (float)
def add complex and rational(z, r):

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

--------------------------------------------------------------------------

z .imag)
def add by type dispatching(zl, z2):
"""Add zl1 and z2, which may be complex or rational."""
if iscomplex(zl) and iscomplex(z2):
return add complex(zl, z2)
elif iscomplex(zl) and isrational (z2):
return add complex and rational (zl, z2)
elif isrational(zl) and iscomplex(z2):
return add complex and rational (z2, zl)
else:
add rational (zl, z2)



Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type (like we did for
message passing)

def type tag(x):
return type tags|[type (x)]

--------------------------------------------

type tags = {ComplexRI: 'com', [ DeclaresthatComplexRI
.ComplexMA: 'com'5<_ and ComplexMA should be

Rational: ‘'rat'} treated uniformly
def add(zl, z2):

types = (type_tag(zl), type_tag(z2))
return add implementations[types] (z1l, z2)

add implementations = {}

add implementations[('com', 'com')] = add complex

add implementations[('rat', 'rat')] add rational

add implementations[('com', 'rat')] add complex and rational

-------------------------------------------------------------------

add implementations[('rat', 'com')] =:{add rational and complex:

.
‘assssEEreEeEEEssEEEEEEEEEEEEEnE s nn e annnnn s TR nnnnnnt

(;ambda r, z: add complex and rational(z, r)




Type Dispatching Analysis
Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

def add(zl, z2):
types = (type tag(zl), type tag(z2))

return add implementations|[types] (z1l, z2)

Question: How many cross-type implementations are required to
support m types and n operations?

( integer, rational, real, | ,, . _ 1) add, subtract, mU"L'iIO'V,j
complex divide

4= 48




Type Dispatching Analysis
Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

Message Passing

<8u!qaleds!(] adA]



Data-Directed Programming

There's nothing addition-specific about add

Idea: One dispatch function for (operator, types) pairs

def apply(operator name, x, y):
(type_tag(x), type tag(y))

key = (operator name, tags)

return apply implementations[key] (x, y)

tags =

apply implementations = {

('add',
('add',
('add',
('add',
('mul’',
('mul'’,
('mul’',
('mul',

}

('com',
('rat',
('com',
('rat',
('com',
('rat',
('com',
('rat',

'com')) :
'rat')) :
'rat')):
'com')):
'com')):
'rat')):
'rat')) :
'com')):

add complex,
add rational,
add complex and rational,
add rational and complex,
mul complex,
mul rational,
mul complex and rational,
mul rational and complex



Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

def rational to complex(x):
return ComplexRI (x.numerator / x.denominator, 0)

coercions = {('rat', 'com'): rational to complex}

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed
programming?



.
Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations

def coerce apply(operator name, x, y):
tx, ty = type tag(x), type tag(y)
if tx '= ty:
if (tx, ty) in coercions:
tx, x = ty, coercions|[ (tx, ty)] (x)
elif (ty, tx) in coercions:
ty, v = tx, coercions|[ (ty, tx)] (y)

else:
return 'No coercion possible.'
assert tx == ty
key = (operator name, tx)

return coerce implementations[key] (x, y)



Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type
coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

Arg 1l Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

7 N
From To Coerce Type Add Multiply

Complex Rational Complex
Rational Complex Rational




