61ALECTURE 12 —
OOP 2, INHERITANCE

Steven Tang and Eric Tzeng
July 14, 2013




Announcements

- Midterm grades are up
- Average: 34
- First quartile: 26.5
- Median: 36.0
- Third quartile: 43.0

- Hog contest strategy due today!



Review time

- You've seen all this before, so we're going to try to go a
little faster...

- ...but it was the day of the midterm, so we understand if
the stuff is a little hazy

- Ask questions/slow me down if necessary!



e
Recall: Objects

- Everything in Python is an object
- Every object has a “type”

- An object’s type (essentially, its “class”) determines the set of
behaviors and attributes that each object has

>>> X = 4 >>> s =[9, 5, 12, 7]
>>>y =5 >>> s.sort

>SS X.real <built-in method sort ...>
4 >>> s.sort()

>>> y.real >>> S

5 [5, 7, 9, 12]

X and y are both int type: both have a real
component, but different local values



Object-Oriented Programming

A method for organizing modular programs
® Abstraction barriers
®* Message passing

®* Bundling together information and related behavior

A metaphor for computation using distributed state
®* Each object has its own local state.

®* Each object also knows how to manage its own local state,
based on the messages it receives.

® Several objects may all be instances of a common type.

* Different types may relate to each other as well.

Specialized syntax & vocabulary to support this metaphor



Classes

A class serves as a template for its instances.

Idea: All bank accounts have a s>> a = Account('Jim")

balance and an account holder; the s> a.holder
Account class should add those 'Jim'

attributes to each newly created >>> a.balance
instance. 0

Idea: All bank accounts should have >>> a.deposit(15)
"withdraw" and "deposit" behaviors 15

: >>> a.withdraw(10
that all work in the same way. . (10)

>>> a.balance

5

>>> a.withdraw(10)
"Insufficient funds'

Better idea: All bank accounts share
a "withdraw" method.



The Class Statement

--------------------------------------------
.

class <name>(<base classXxi:
<suite> Discussed Iater)

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <suite> create attributes of the class.

As soon as an instance is created, it is passed to __init
which is an attribute of the class.

class Account (object):
def init (self, account holder):
self.balance = 0
self.holder = account holder



Initialization

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.
>>> a = Account('Jim")
>>> a.holder [}
"Jim’
>>> a.balance
(%

When a class is called:

--------------------------------------------------

1. A new instance of that class is created:
2. Theconstructor init  ofthe classis called with the new

object as its first argument (called sel£f), along with additional
arguments provided in the call expression.

class Account(object)é ......................................... .
def init (self, account_ho%der):

self.balance = 0 :

self.holder = account holder



-
Object ldentity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Jim")
>>> b = Account('Jim")

Identity testing is performed by "is" and "is not" operators:

>>> a is b
False

>>> a 1is not b
True

Binding an object to a new name using assignment does not
create a new object:
>>> € = a

>>> Cc 1s a
True



-
Methods

Methods are defined in the suite of a class statement

class Account (object):
def init (self, account holder):

self .balance = 0
self.holder = account_holder

def deposit(self, amount):

self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
i1f amount > self.balance:
return 'Insufficient funds'
self.balance = self.balance - amount
return self.balance

These def statements create function objects as always,
but their names are bound as attributes of the class.



Invoking Methods

All invoked methods have access to the object via the self
parameter, and so they can all access and manipulate the

object's state.

class Account (object) : L(\:/alled with two arguments )

-----------------------------------
*

def deposit(self, amount
self .balance = self.balance + amount

return self.balance

.

Dot notation automatically supplies the first argument to
a method.

>>> tom_account = Account('Tom")

o

>>> tom_account.deposit(100)

1@@ ........ S — )
\Invoked with one argument)




Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

------------------------------------------------------------------

----------------------------------------------------
*

tom account. dep051t(1@)
..................... pedla ek

(Dot expression) < Call expression )

-------------------------------------------------------------------




Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance’)
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way
Looking up an attribute name in an object may return:
®* One of its instance attributes, or

® One of the attributes of its class



Methods and Functions

Python distinguishes between:

* Functions, which we have been creating since the
beginning of the course, and

®* Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom account, 1001)
1011

>>> tom_account.deposit(1000)

2011



Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs
Classes are objects too, so they have attributes
Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Terminology: Python object system:
Functions are objects.

Bound methods are also objects: a
Class function that has its first parameter
Attributes "self" already bound to an instance.

Dot expressions on instances
evaluate to bound methods for
class attributes that are functions.




Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1.

2.

3.

Evaluate the <expression>.

<name> is matched against the instance attributes.

------------------------------------------------------

----------------------------------------------------

That class attribute value is returned unless it is a
function, in which case a bound method is returned.



Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.

class Account (object) :
interest = 0.02 # Class attribute

def init (self, account holder):
self .balance = 0 # Instance attribute
self . holder = account holder

# Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim")

>>> tom_account.interest < . ~
0.02 interest is not part of the
>>> jim_account.interest instance that was somehow

0.02 _copied from the class!




Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression

* |If the object is an instance, then assignment sets an instance

attribute

* Ifthe objectis a class, then assignment sets a class attribute

---------------------------------------------------------------------------------------

------------------------------------------------------------------

Instance ::
Attribute ::

Assignment

Class Attribute

Assignment

-------------------------------

*e o
------------------------------

his expression evaluates t

---------------------------------------------------------------------------------------

= 0.08: { Attribute

an object
/\ ................................... .
: But the name (“interest”) is not
[ looked up

\ tom_account )

Account.interest

= 0.04

~

assignment
statement adds
or modifies the
“interest”
attribute of




Practice

- Make a Dog class

- To create a Dog instance, provide a name that will be kept
track of

- Dogs keep track of their hunger, which starts at 0

- You can ask Dogs to speak()
- Doing so increases their hunger by 1 and returns ‘woof’

- You can have a Dog eat() >»> beagle = Dog(*snoopy”’)

- This decreases hunger by 1 »>>> sSnoopy.name
“snoopy’

>>> snoopy.speak()
‘woof’

>>> snoopy.speak()
‘woof’

>>> snoopy.hunger
2



Break!



Inheritance

A technique for relating classes together
Common use: Similar classes differ in amount of specialization
Two classes have overlapping attribute sets, but one represents

a special case of the other.

class <name> (<base class>):
<suite>

Conceptually, the new subclass "shares" attributes with its
base class.

The subclass may override certain inherited attributes.

Using inheritance, we implement a subclass by specifying its
difference from the base class.



Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom")

>>> ch.interest # Lower interest rate for checking accounts
0.01

>>> ch.deposit(20) # Deposits are the same

20

>>> ch.withdraw(5) # Withdrawals incur a $1 fee

14

Most behavior is shared with the base class Account

-----------------
** Yo

-------------------

"""A bank account that charges for withdrawals."""
withdraw fee =1
interest = 0.01
def withdraw(self, amount):
return Account.withdraw(self,
amount + self.withdraw fee)



Looking Up Attribute Names on Classes
Base class attributes aren't copied into subclasses!

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account. init

>>> ch.interest # Found in CheckingAccount
0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5) # Found in CheckingAccount
14



Designing for Inheritance

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via
class objects.

Look up attributes on instances whenever possible.

class CheckingAccount (Account) :
"""A bank account that charges for withdrawals."""
withdraw fee =1
interest = 0.01

lllllllllllllllllllllllllllllllllllllllllllll

return Account.withdrawiself,

---------------------------------------------------

............. A +§self.withdraw;feg3
Attribute Iook-up st i
on base class Preferable alternative to
CheckingAccount.withdraw fee




General Base Classes

Base classes may contain logic that is meant for subclasses.

Example: Same CheckingAccount behavior; different
approach

class Account (object):
;::EZ?:‘: ;eg ) 220 <May be overridden by subclassesj
def withdraw(self, amount):
amount += self.withdraw fee
i1if amount > self.balance:
return 'Insufficient funds'
self.balance = self.balance - amount

return self.balance

class CheckingAccount (Account) :

interest = 0.01 . . .
withdraw fee = 1 <Noth|ng else needed in this classj




Inheritance and Composition

Object-oriented programming shines when we adopt the
metaphor.

Inheritance is best for representing is-a relationships.
E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.
E.g., a bank has a collection of bank accounts it manages.

So, A bank has a list of Account instances as an attribute.

No local state at all? Just write a pure function!



More practice!

- Write a Collie class that does pretty much the same
thing as the Dog class...

- Except when you tell it to speak(), it returns “there is
a boy trapped in the well’ instead of ‘woof’

- And when you tell it to eat (), it returns ‘this food 1is
exquisite’ instead of None



