61A LECTURE 11 —
OOP

Steven Tang and Eric Tzeng
July 11, 2013

Announcements

- Midterm! Don’t stress too much.
- /pm
- 2050 VLSB for logins aa-hz
- 10 Evans for logins ia-zz

- Hog contest strategy due Monday!

L
Where are we?

- Weeks 1 and 2:

- The power of functions and functional programming
- Can perform useful computations, like Newton’s Method and Count Change
- Can simulate games, like Hog
- Utilize data abstraction to deal with complex programs
- Can use recursion to express and solve certain types of problems

- Week 3:
- What about other interesting problems, like modelling things that change?

- A lead-up to Object Oriented Programming

- Instead of creating a new function to do everything, let’'s bundle data and
behavior together, and have each object perform computation

- An extremely powerful metaphor that allows coding to be efficient and simple
- Heavily relies on mutating the environment to update information

The Story So Far About Data

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

Message passing: We can organize large programs by building
components that relate to each other by passing messages.

Dispatch functions/dictionaries: A single object can include
many different (but related) behaviors that all manipulate
the same local state.

(All of these techniques can be implemented
using only functions and assignment.)

L
A Mutable Container

def container (contents):
"""Return a container that is manipulated by two
functions.

>>> get, put = container('hello')
>>> get ()

'hello'

>>> put ('world')

>>> get()

'world'

mwiw

def get():
return contents

def put(value):
nonlocal contents
contents = wvalue

Two separate functions to

return put, get manage! Can we make this easier?

L
Dispatch Functions

A technique for packing multiple behaviors into one function

def pair(x, y):
"""Return a function that behaves like a pair."""
def dispatch(m):
if m ==
return x
elif m == 1:
return y
return dispatch

Message argument can be anything, but strings are most
common

The body of a dispatch function is always the same:

®* One conditional statement with several clauses

* Headers perform equality tests on the message

L
An Account as a Dispatch Dictionary

def account(balance) :
"""Return an account that is represented as a
dispatch dictionary."""

def withdraw (amount) :
if amount > dispatch|['balance’]:
return 'Insufficient funds'
dispatch['balance'] -= amount (Question: Why
return dispatch|['balance’'] < dispatch['balance"']
and not balance?

def deposit (amount) : \
dispatch|['balance'] += amount
return dispatch|['balance’]
dispatch = {'balance': balance, 'withdraw': withdraw,

'deposit': deposit}

return dispatch

Object Oriented Programming

- Message passing seems like a good idea

- Data can respond to lots of different requests - we can have
powerful data

- Mutable local state seems like a good idea
- Humans relate to this — things change in real life all the time

- Let’s program using both of these ideas. Python provides
us with convenient OOP syntax

- Warning: Lots of new syntax! Best learning occurs
through hands-on practice. Be sure to go to lab next
week.

L
Recall: Objects

- Everything in Python is an object
- Every object has a “type”

- An object’s type (essentially, its “class”) determines the set of
behaviors and attributes that each object has

>>> X = 4 >>> s =[9, 5, 12, 7]

>>> y = 5 >>> s.sort

>SS X.real <built-in method sort ...>
4 >>> s.sort()

>>> y.real >>> S

5 [5, 7, 9, 12]

X and y are both int type: both have a real
component, but different local values

L
Interpreter session

- Recall the account abstraction created with dispatch dictionaries:
def account(balance) :
def withdraw (amount) :
def deposit (amount) :
dispatch = {'balance': balance, 'withdraw': withdraw,
'deposit': deposit}

return dispatch

- Let’s create a similar account, except let's use Python’s object
notation

L
Classes and Objects

- Every object is an instance of some particular class — use
“type(obj)” to find which class

- The objects we have used so far in the course have all
been created from built-in Python classes, but we can
create our own

- Creating a new class is essentially making a new abstract
data type. Inside the class definition, all of the objects’
behavior is specified.

A class is a blueprint of behaviors for creating objects

Every object created from that blueprint will have that certain
set of behaviors

L
Classes

A class serves as a template for its instances.

Idea: All bank accounts have a s»> a = Account('Jim')

balance and an account holder; the >>> a.holder
Account class should add those 'Jim'

attributes to each newly created >>> a.balance
instance. 0

Idea: All bank accounts should have >>> a.deposit(15)
"withdraw" and "deposit" behaviors 15 o

that all work in the same way. ;» a.withdraw(10)

>>> a.balance

5

>>> a.withdraw(10)
"Insufficient funds'

Better idea: All bank accounts share
a "withdraw" method.

L
The Class Statement

--

class <name>(<base classXx):
<suite> Discussed Iater)

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <suite> create attributes of the class.

As soon as an instance is created, itis passedto init |,
which is an attribute of the class.

class Account (object):
def init (self, account holder):
self.balance = 0
self.holder = account holder

L
Initialization

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim")

>>> a ° h01der‘ -" II »

'Jim' “

>>> a.balance

@ [|
When a class is called:
1. A new instance of that class is created: Nl

2. The constructor init of the class is called with the new

object as its first argumerﬁcalled self), along with additional
arguments provided in the call expression.

class Account(object) ... o
def init (self, account_ho{der):
self.balance = 0)

self.holder = account holder

lllllllllllllllllllll

Break

L
Object Identity

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Jim")
>>> b = Account('Jim")

ldentity testing is performed by "is" and "is not" operators:

>>> a is b
False

>>> a 1s not b
True

Binding an object to a new name using assignment does not
create a new object:
>>> € = a

>»> Cc 1s a
True

D
Methods

Methods are defined in the suite of a class statement

class Account (object):
def init (self, account holder):

self.balance = 0
self.holder = account holder

def deposit(self, amount):

self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
if amount > self.balance:
return 'Insufficient funds'
self.balance = self.balance - amount
return self.balance

These def statements create function objects as always,
but their names are bound as attributes of the class.

L
Invoking Methods

All invoked methods have access to the object via the self
parameter, and so they can all access and manipulate the
object's state.

* *

* *

self .balance = self. balance + amount
return self.balance

Dot notation automatically supplies the first argument to
a method.

>>> tom_account Account(‘Tom')

100 .
Llnvoked with one argument)

L
Dot Expressions

Objects receive messages via dot notation
Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

*

ﬁom account. dep051t11@)
..................... et it

(Dot expression) < Call expression)

*

L
Accessing Attributes

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way
Looking up an attribute name in an object may return:
® One of its instance attributes, or

® One of the attributes of its class

L
Methods and Functions

Python distinguishes between:

®* Functions, which we have been creating since the
beginning of the course, and

®* Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom _account.deposit)
<class 'method'>

>>> Account.deposit(tom _account, 1001)
1011

>>> tom_account.deposit(1000)

2011

L
Methods and Currying

Earlier, we saw currying, which converts a function that
takes in multiple arguments into multiple chained functions.

The same procedure can be used to create a bound
method from a function

def curry(f):
def outer (x):
def inner (*args):
return f (x, *args)
return inner

>>> add2 = curry(add)(2) return outer
>>> add2(3)

5

>>> tom_deposit = curry(Account.deposit)(tom_account)
>>> tom _deposit(1000)
3011

Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs
Classes are objects too, so they have attributes
Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Terminology: Python object system:
Functions are objects.

Bound methods are also objects: a
Class function that has its first parameter
"self" already bound to an instance.

Attributes

Dot expressions on instances
evaluate to bound methods for
class attributes that are functions.

L
Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:
1. Evaluate the <expression>.

2. <name> is matched against the instance attributes.

--

3. If not found, <name> isilooked up in the class:

4. That class attribute value is returned unless it is a
function, in which case a bound method is returned.

L
Class Attributes

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.

class Account (object):
interest = 0.02 # Class attribute

def init (self, account holder):

self.balance = 0 # Instance attribute
self.holder = account holder

Additional methods would be defined here

>>> tom_account = Account('Tom'")
>>> jim_account = Account('Jim")
>>> tom_account.interest <

: ~
0.02 interest is not part of the
>>> jim_account.interest instance that was somehow
9.02 copied from the class!

. J

L
Assignment to Attributes

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression

* |fthe objectis an instance, then assignment sets an instance
attribute

* |If the object is a class, then assignment sets a class attribute

--
0

0

Instance i {on account’; interesti= 0.08 { Attribute

Attribute :g g 7.\. E E ass'gnment
Assignment . [This expression evaluates to] : . | statement adds
¥ an object : . | or modifies the

g *tiusssmmsssssssssssssEssss 7.\. * ; ((interest”

[But the name (“interest”) is not] . | attribute of

looked up \tom_account)

Class Attribute

: : Account.interest = 0.04
Assignment

L
Attribute Assignment Statements

Account class >interest: B»eZ ©+ed 0.05

attributes (withdraw, deposit, init)
balance: © balance: ©
holder: "Jim'’ holder: "Tom'
interest: 0.08

>>> jim_account = Account('Jim') | >>> jim_account.interest = 0.08
>>> tom_account = Account('Tom') | >>> jim_account.interest
>>> tom_account.interest 0.08

0.02 >>> tom_account.interest
>>> jim_account.interest 9.04

0.02 >>> Account.interest = 0.05
>>> tom_account.interest >>> tom_account.interest
0.02 0.05

>>> Account.interest = 0.04 >>> jim_account.interest
>>> tom_account.interest 0.08

0.04

L
Object-Oriented Programming

A method for organizing modular programs
® Abstraction barriers
®* Message passing

®* Bundling together information and related behavior

A metaphor for computation using distributed state
®* Each object has its own local state.

®* Each object also knows how to manage its own local state,
based on the messages it receives.

* Several objects may all be instances of a common type.

* Different types may relate to each other as well.

Specialized syntax & vocabulary to support this metaphor

