
61A LECTURE 11 –

OOP
Steven Tang and Eric Tzeng

July 11, 2013

Announcements

• Midterm! Don’t stress too much.

• 7pm

• 2050 VLSB for logins aa-hz

• 10 Evans for logins ia-zz

• Hog contest strategy due Monday!

Where are we?

• Weeks 1 and 2:

• The power of functions and functional programming

• Can perform useful computations, like Newton’s Method and Count Change

• Can simulate games, like Hog

• Utilize data abstraction to deal with complex programs

• Can use recursion to express and solve certain types of problems

• Week 3:

• What about other interesting problems, like modelling things that change?

• A lead-up to Object Oriented Programming

• Instead of creating a new function to do everything, let’s bundle data and

behavior together, and have each object perform computation

• An extremely powerful metaphor that allows coding to be efficient and simple

• Heavily relies on mutating the environment to update information

The Story So Far About Data

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

Message passing: We can organize large programs by building
components that relate to each other by passing messages.

Dispatch functions/dictionaries: A single object can include
many different (but related) behaviors that all manipulate
the same local state.

(All of these techniques can be implemented
using only functions and assignment.)

A Mutable Container
def container(contents):

"""Return a container that is manipulated by two

functions.

>>> get, put = container('hello')

>>> get()

'hello'

>>> put('world')

>>> get()

'world'

"""

def get():

return contents

def put(value):

nonlocal contents

contents = value

return put, get
Two separate functions to

manage! Can we make this easier?

Dispatch Functions
A technique for packing multiple behaviors into one function

def pair(x, y):

"""Return a function that behaves like a pair."""

def dispatch(m):

if m == 0:

return x

elif m == 1:

return y

return dispatch

Message argument can be anything, but strings are most
common

The body of a dispatch function is always the same:

• One conditional statement with several clauses

• Headers perform equality tests on the message

An Account as a Dispatch Dictionary
def account(balance):

"""Return an account that is represented as a

dispatch dictionary."""

def withdraw(amount):

if amount > dispatch['balance']:

return 'Insufficient funds'

dispatch['balance'] -= amount

return dispatch['balance']

def deposit(amount):

dispatch['balance'] += amount

return dispatch['balance']

dispatch = {'balance': balance, 'withdraw': withdraw,

'deposit': deposit}

return dispatch

Question: Why
dispatch['balance']

and not balance?

Object Oriented Programming

• Message passing seems like a good idea

• Data can respond to lots of different requests - we can have

powerful data

• Mutable local state seems like a good idea

• Humans relate to this – things change in real life all the time

• Let’s program using both of these ideas. Python provides

us with convenient OOP syntax

• Warning: Lots of new syntax! Best learning occurs

through hands-on practice. Be sure to go to lab next

week.

Recall: Objects
• Everything in Python is an object

• Every object has a “type”

• An object’s type (essentially, its “class”) determines the set of

behaviors and attributes that each object has

• x and y are both int type: both have a real
component, but different local values

>>> s = [9, 5, 12, 7]
>>> s.sort
<built-in method sort ...>
>>> s.sort()
>>> s
[5, 7, 9, 12]

>>> x = 4
>>> y = 5
>>> x.real
4
>>> y.real
5

Interpreter session
• Recall the account abstraction created with dispatch dictionaries:

def account(balance):

def withdraw(amount):

...

def deposit(amount):

...

dispatch = {'balance': balance, 'withdraw': withdraw,

'deposit': deposit}

return dispatch

• Let’s create a similar account, except let’s use Python’s object

notation

Classes and Objects

• Every object is an instance of some particular class – use

“type(obj)” to find which class

• The objects we have used so far in the course have all

been created from built-in Python classes, but we can

create our own

• Creating a new class is essentially making a new abstract

data type. Inside the class definition, all of the objects’

behavior is specified.

A class is a blueprint of behaviors for creating objects

Every object created from that blueprint will have that certain

set of behaviors

Classes
A class serves as a template for its instances.

Idea: All bank accounts have a
balance and an account holder; the
Account class should add those
attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors
that all work in the same way.

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Better idea: All bank accounts share
a "withdraw" method.

The Class Statement

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <suite> create attributes of the class.

As soon as an instance is created, it is passed to __init__,
which is an attribute of the class.

class <name>(<base class>):

<suite>

class Account(object):

def __init__(self, account_holder):

self.balance = 0

self.holder = account_holder

Discussed later

Initialization

When a class is called:

1. A new instance of that class is created:

2. The constructor __init__ of the class is called with the new
object as its first argument (called self), along with additional
arguments provided in the call expression.

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account(object):

def __init__(self, account_holder):

self.balance = 0

self.holder = account_holder

Break

Object Identity

>>> a = Account('Jim')
>>> b = Account('Jim')

>>> a is b
False
>>> a is not b
True

Every object that is an instance of a user-defined class has a
unique identity:

Binding an object to a new name using assignment does not
create a new object:

Identity testing is performed by "is" and "is not" operators:

>>> c = a
>>> c is a
True

Methods
Methods are defined in the suite of a class statement

class Account(object):

def __init__(self, account_holder):

self.balance = 0

self.holder = account_holder

def deposit(self, amount):

self.balance = self.balance + amount

return self.balance

def withdraw(self, amount):

if amount > self.balance:

return 'Insufficient funds'

self.balance = self.balance - amount

return self.balance

These def statements create function objects as always,
but their names are bound as attributes of the class.

Invoking Methods
All invoked methods have access to the object via the self
parameter, and so they can all access and manipulate the
object's state.

class Account(object):

...

def deposit(self, amount):

self.balance = self.balance + amount

return self.balance

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Dot notation automatically supplies the first argument to
a method.

Invoked with one argument

Called with two arguments

Dot Expressions
Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

tom_account.deposit(10)

Dot expression
Call expression

Accessing Attributes
Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

• One of its instance attributes, or

• One of the attributes of its class

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the
beginning of the course, and

• Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1000)
2011

Methods and Currying
Earlier, we saw currying, which converts a function that
takes in multiple arguments into multiple chained functions.

The same procedure can be used to create a bound
method from a function

def curry(f):

def outer(x):

def inner(*args):

return f(x, *args)

return inner

return outer>>> add2 = curry(add)(2)
>>> add2(3)
5

>>> tom_deposit = curry(Account.deposit)(tom_account)
>>> tom_deposit(1000)
3011

Attributes, Functions, and Methods

Class
Attributes

Functions

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attributes: attributes of instance objects

Class attributes: attributes of class objects

Methods

Functions are objects.

Bound methods are also objects: a
function that has its first parameter
"self" already bound to an instance.

Dot expressions on instances
evaluate to bound methods for
class attributes that are functions.

Terminology: Python object system:

Looking Up Attributes by Name
<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression>.

2. <name> is matched against the instance attributes.

3. If not found, <name> is looked up in the class.

4. That class attribute value is returned unless it is a
function, in which case a bound method is returned.

Class Attributes
Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance.

class Account(object):

interest = 0.02 # Class attribute

def __init__(self, account_holder):

self.balance = 0 # Instance attribute

self.holder = account_holder

Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

interest is not part of the
instance that was somehow

copied from the class!

Assignment to Attributes
Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression

• If the object is an instance, then assignment sets an instance
attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”) is not
looked up

Attribute
assignment

statement adds
or modifies the

“interest”
attribute of

tom_account

Instance
Attribute

Assignment
:

Account.interest = 0.04
Class Attribute

Assignment
:

This expression evaluates to
an object

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Object-Oriented Programming
A method for organizing modular programs

• Abstraction barriers

• Message passing

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state.

• Each object also knows how to manage its own local state,
based on the messages it receives.

• Several objects may all be instances of a common type.

• Different types may relate to each other as well.

Specialized syntax & vocabulary to support this metaphor

