61ALECTURE 10 —
MUTABLE DATA

Steven Tang and Eric Tzeng
July 10, 2013

Announcements

- Do the homework!
- Keep on studying for Midterm 1!

A Function with Evolving Behavior

Let's model a bank account that has a balance of S100

!

Return value:
emaining balanc

:

|

Different
return value!

J

>>> withdraw

Argument:
>>> withdraw(25) <<gmount to withdraw
75

>>> withdraw(25) TSecond withdrawal}

>0 of the same amount

>>> withdraw(60)
Insufficient funds [Where's this }

: ?
>>> withdraw(15) balance stored:

35

= make withdraw(100) Within the
function!

First attempts

def make withdraw(balance):

"""Return a withdraw function with a starting balance."""

def withdraw(amount) : Local variable ‘balance’

if amount > balance: referenced before assignment...

return 'Insufficient funds'

balance = balance - amount

return balance

return withdraw

Python particulars

Python pre-computes which frame contains each name before
executing the body of a function.

Therefore, within the body of a function, all instances of a name
must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'

*

: balance = balance - amount :

return balance ’ .
ILocaI asagnment)

return withdraw

wd = make_withdraw(20)
wd(5)

UnboundLocalError: local variable 'balance' referenced before assignment

Reminder: local assignment

def percent_difference(x, y):

--

i difference = abs(x-y) : Assignment binds name(s) to
value(s) in the first frame of the

return 100 * difference / x
diff = percent_difference(40, 50) .
current environment

Global frame func percent_difference(x, y)

percent_difference

percent_difference

X 40
y 50
difference 10

Execution rule for assignment statements:
1. Evaluate all expressions right of =, from left to right.

2. Bind the names on the left the resulting values in the first
frame of the current environment.

The effect of nonlocal statements

nonlocal <name>, <name 2>,

Effect: Future assignments to that name change its pre-existing binding

*

*

name is bound.)

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing
bindings in an enclosing scope. Names listed in a nonlocal statement
must not collide with pre-existing bindings in the local scope.

http://docs.python.org/release/3.1.3/reference/simple stmts.html#the-nonlocal-statement

http://www.python.org/dev/peps/pep-3104/

Non-Local Assignment

def make withdraw(balance):

"""Return a withdraw function with a starting balance."""

def withdraw (amount) : Declare the name

nonlocal balance "balance" nonlocal

if amount > balance:

return 'Insufficient funds'

.)
balance = balance - amount Re-bind balance

where it was

return balance bound previously

return withdraw

Persistent Local State

Global frame func make_withdraw(balance)

func withdraw(amount) [parent=fl]
/\

A function with a
parent frame

make_withdraw L
withdraw L

fl: make_withdraw

balance 5@2
ithd .
YEET) The parent contains
Return
value | local state

withdraw [parent=f1]
amount 125 Every call changesj

“ale |75 the balance

withdraw [parent=fl]

amount E

Return
value 50

Effects of Assighment Statements

Status Effect
® No nonlocal statement Create a new binding from name "x" to object 2
®"x" is not bound locally in the first frame of the current environment.
® No nonlocal statement Re-bind name "x" to object 2 in the first frame
®"x" is bound locally of the current env.
® nonlocal x Re-bind "x" to 2 in the first non-local frame of
®"x" is boundinanon-local the current environment in which it is bound.
frame
® nonlocal x SyntaxError: no binding for nonlocal 'x' found
®"x" is not bound in a non-
local frame
® nonlocal x SyntaxError: name 'x' is parameter and nonlocal

®'"y"isboundin a
non-local frame
®"x" also bound locally

X = 2

Mutable Values and Persistent State

Mutable values can be changed without a nonlocal statement.

Global frame func make_withdraw_list(balance)
make_withdraw_list L S .
withdraw | - ‘o i Mutable value can
4 - B change

fl: make_withdraw_list
func withdraw(amount) [parent=f1]

balance [100
withdraw, |2/
. . !: b .: o . .
N e e bmdlng ________________ def make_withdraw_list(balance):
H Reﬁwn b = [balance]
cannot change value | def withdraw(amount):

if amount > b[O]:

return 'Insufficient funds'
amount E b[O0] = b[O] - amount

return b[0]
return withdraw

withdraw [parent=f1]

withdraw = make_withdraw_1ist(100)
withdraw(25)

Example: http://goo.gl/kJAIF

Creatina Two Withdraw Functions

Global frame func make_withdraw(balance)

make_withdraw

d ./,/'-——f>func withdraw(amount) [parent=f1]
w

wdzl:f”—-“’?func withdraw(amount) [parent=f2]

fl: make_withdraw

balance |75

withdraw

1 def make_withdraw(balance):

2 def withdraw(amount):

3 nonlocal balance

4 if amount > balance:

5 return 'Insufficient funds'
6

7

8

9

Return
value

INRE

f2: make_withdraw

balance |85

withdraw
balance = balance - amount

return balance
return withdraw

Return
value

R

withdraw [parent=f1]

amount |2

10 wd = make_withdraw(100)
11 wd2 = make_withdraw(100)
12 wd(25)

— 13 wd2(15)

Return
value

R

withdraw [parent=f2]

amount |15

15
Return \f

value

Example: http://goo.gl/BcORc

Multiple References to a Withdraw Function

Global frame .///,,——+>func make_withdraw(balance)
make_withdraw

func withdraw(amount) [parent=f1]
wd L

wd2 L

fl: make_withdraw

balance |60 def make_withdraw(balance):

withdraw def withdraw(amount):
Return Iy nonlocal balance
value if amount > balance:

withdraw [parent=f1]

1

2

3

4

5 return 'Insufficient funds'
6 balance = balance - amount

7
8
9

amount |25 return balance
Return |- return withdraw
value E
10 wd = make_withdraw(100)
withdraw [parent=f1] 11 wd2 = wd
amount |15 12 wd(25)
Return 60 . 13 wd2(15)
value |

Example: http://goo.gl/VELOP

The Benefits of Non-Local Assignment

Ability to maintain some state that is local to a function, but
evolves over successive calls to that function.

The binding for balance in the first non-local frame of the

environment associated with an instance of withdraw is
inaccessible to the rest of the program.

An abstraction of a bank account that manages its own
internal state.

Weasley Potter
Account Account

$10 $1,000,000

Break!

What have we accomplished

- We've created a form of data that can:
- Keep track of a changing state (the account balance)

- Perform actions based on that state (withdraw money, or complain
about insufficient funds)

- Rest of lectures is variations on this theme

- This is exciting! Allows us to solve more interesting
problems

- But we lost something in the process...

Referential transparency

Expressions are referentially transparent if substituting an
expression with its value does not change the meaning of a

program.
mul(add(2, mul(4, 6)), 3)
mul(add(2, 24), 3)
mul(26 » 3)

Mutation is a side effect (like printing)

Side effects violate the condition of referential transparency
because they do more than just return a value; they change the
state of the computer.

-
A Mutable Container

def container (contents):
"""Return a container that is manipulated by two
functions.

>>> get, put = container('hello')
>>> get()

'hello'

>>> put('world')

>>> get ()

'world'

wiww

def get():
return contents

def put(value) :
nonlocal contents
contents = wvalue

Two separate functions to

return put, get manage! Can we make this easier?

Dispatch Functions

A technique for packing multiple behaviors into one function

def pair(x, y):
"""Return a function that behaves like a pair."""
def dispatch(m) :
if m ==
return x
elif m ==
return y
return dispatch

Message argument can be anything, but strings are most
common

The body of a dispatch function is always the same:
® One conditional statement with several clauses

®* Headers perform equality tests on the message

Message Passing

An approach to organizing the relationship among different pieces of a
program

Different objects pass messages to each other

* What is your fourth element?

e Change your third element to this new value. (please?)

Encapsulates the behavior of all
operations on a piece of data

Important historical role:

The message passing approach
strongly influenced object-oriented
programming

(next lecture)

Mutable Container with Message Passing

def container dispatch(contents): def container(contents):

def dispatch(message,
value=None):

nonlocal contents

if message == 'get': <ij:::::£>> def get():

return contents return contents
if message == ‘put': <ij:::::£>> def put(value):
contents = value nonlocal contents

contents = value

return dispatch return put, get

Mutable Recursive Lists
def mutable rlist():
contents = empty rlist
def dispatch (message, wvalue=None):
nonlocal contents
if message == 'len':
return len rlist(contents)
elif message == 'getitem':
return getitem rlist(contents, value)
elif message == 'push':
contents = make rlist(value, contents)
elif message == 'pop':
item = first(contents)
contents = rest (contents)
return item
elif message == 'str':
return str rlist(contents)
return dispatch

Building Dictionaries with Lists

Now that we have lists, we can use them to build dictionaries

We store key-value pairs as 2-element lists inside another list

records = [['cain', 2.79],
[' bumgarner', 3.37],
['vogelsong', 3.37],
['lincecum', 5.18],
['zito', 4.15]]

Dictionary operations:

* getitem (key): Look at each record until we find a stored
key that matches key

* setitem(key, wvalue):Checkif thereis arecord with
the given key. If so, change the stored value to value. If not,
add a new record that stores key and value.

Implementing Dictionaries

def dictionary():
"""Return a functional implementation of a dictionary."""

records = []

def getitem(key) :
for k, v in records:
if k == key:

return v
def setitem(key, value): Question: Do we need a nonlocal
for item in records:
ment here?
if item[0] == key: statement here
item[l] = wvalue
return

records.append([key, value])

def dispatch (message, key=None, value=None) :

if message == 'getitem': (A
return getitem (key) . . .

olif messagg —— ,seti{em, : This huge if-clause is
setitem(key, value) < still rather unsightly!

elif message == 'keys': Can we do better?
return tuple(k for k, in records) :

elif message == 'values': - \ /
return tuple(v for , v in records)

return dispatch

Dispatch Dictionaries

Enumerating different messages in a conditional statement isn't
very convenient:

®* Equality tests are repetitive
®* We can't add new messages without writing new code

A dispatch dictionary has messages as keys and functions (or
data objects) as values.

Dictionaries handle the message look-up logic; we concentrate
on implementing useful behavior.

An Account as a Dispatch Dictionary

def account (balance):
"""Return an account that is represented as a
dispatch dictionary."""

def withdraw (amount) :
if amount > dispatch]|['balance']:
return 'Insufficient funds},
dispatch['balance'] -= amount Question: Why
return dispatch['balance'] < dispatch['balance’]
. and not balance?)

def deposit (amount) :
dispatch|['balance’'] += amount
return dispatch|['balance']

dispatch = {'balance': balance, 'withdraw': withdraw,
'deposit': deposit}

return dispatch

The Story So Far About Data

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

Message passing: We can organize large programs by building
components that relate to each other by passing messages.

Dispatch functions/dictionaries: A single object can include
many different (but related) behaviors that all manipulate
the same local state.

(All of these techniques can be implemented
using only functions and assignment.)

